Scientific Programming 12 (2004) 253-262 253
10S Press

A low-cost rescheduling policy for efficient
mapping of workflows on grid systems

Rizos Sakellariou and Henan Zhao
School of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, UK
E-mail: {rizos, hzhao}@cs.man.ac.uk

Abstract. Workflow management isemerging as an important service in Grid computing. A simple model that can be used for the
representation of certain workflows is a directed acyclic graph. Although many heuristics have been proposed to schedule such
graphs on heterogeneous environments, most of them assume accurate prediction of computation and communication costs. This
limitstheir direct applicability to a dynamically changing environment, such asthe Grid. In this environment, an initial schedule
may be built based on estimates, but run-time rescheduling may be needed to improve application performance. This paper
presents a low-cost rescheduling policy, which considers rescheduling at a few, carefully selected points during the execution.
This policy achieves performance results, which are comparable with those achieved by a policy that dynamically attempts to

reschedule before the execution of every task.

1. Introduction

Many use cases of Grid computing relate to applica-
tionsthat require complex workflowsto be mapped onto
a range of distributed resources. Although the char-
acteristics of workflows may vary, a simple approach
to model a workflow is by means of a directed acyclic
graph (DAG) [8,10]. Thismodel providesan easy way
of addressing the mapping problem; ascheduleis built
by assigning the nodes (the terms ‘task’ and ‘node’
are used interchangeably throughout this paper) of the
graph onto resourcesin away that respectstask depen-
dences and minimizes the overall execution time. In
the general context of heterogeneous distributed com-
puting, a number of scheduling heuristics have been
proposed (see [15,17,19] for an extensive list of refer-
ences). Typically, these heuristics assumethat accurate
predictionisavailablefor both the computation and the
communication costs. However, in areal environment
and even morein the Grid, it is difficult to estimate ac-
curately those val ues dueto the dynamic characteristics
of the environment. Consequently, an initial schedule
may be built using inaccurate predictions; even though
the schedule may be optimized with respect to these
predictions, run-time variations may affect the sched-
ule's performance significantly.

There are two main approaches to deal with unpre-
dictability. One approach is to schedule all tasks at
run-time, asthey become avail able; thismay take place
on aper task basis or in groups of independent tasks (as
in[7]). Theother approachisto plan in advance, build
astatic schedule using the avail abl e estimates, and pos-
sibly respond to changes that may occur at run-time
by rescheduling. In the context of the Grid, reschedul-
ing of one kind or the other has been considered by
anumber of projects, such as AppLeS [2,6], Condor-
G [9], Data Grid [11] and Nimrod-G [4,5]. However,
all these projects consider the dynamic scheduling of
setsof independent tasks. For DAG rescheduling, ahy-
brid remapper based on list scheduling algorithmswas
proposed in [14]. Taking a static schedule as the in-
put, the hybrid remapper uses the run-timeinformation
that obtained from the execution of precedence nodes
to make a prediction for subsequent nodesthat is used
for remapping.

Generally speaking, rescheduling adds an extraover-
head to the scheduling and execution process. This
may be related to the cost of reevaluating the schedule
aswell asthe cost of transferring tasks across machines
(in this paper, we do not consider pre-emptive policies
at the task execution level). This cost may be offset
by gains in the execution of the schedule; however,

I SSN 1058-9244/04/$17.00 U 2004 — 10S Press and the authors. All rights reserved

254 R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

what appears to give an indication of a gain at a cer-
tain stage in the execution of a schedule (which may
trigger a rescheduling), may not turn to be good later
in the schedule. In this paper, we attempt to strike a
balance between the cost of rescheduling and the per-
formance of the schedule. We propose a novel, low-
cost, rescheduling policy, which improves the initial
static schedule of aDAG, by considering only selective
tasks for rescheduling based on measurable properties;
as aresult, we call this policy Selective Rescheduling
(SR). Based on simulation results (the results presented
here complement and expand the results included in
the conference version of this paper [21]), this policy
gives equally good performancewith policiesthat con-
sider rescheduling for every task of the DAG, at amuch
lower cost. In our experiments, SR considers less than
30% of the tasks of the DAG for rescheduling; in most
cases, this number is even less than 20%.

The remainder of this paper is organized as follows.
Section 2 defines two criteria to represent the robust-
ness of a schedule, spare time and the slack. We use
these two criteria to make decisions for the Sdlective
Rescheduling policy, presented in Section 3. Section 4
evaluates the performance of the policy. Finally, Sec-
tion 5 concludes the paper.

2. Preliminaries

Themodel used in this paper to represent an applica-
tion is the directed acyclic graph (DAG), where nodes
(or tasks) represent computation and edges represent
communication (data flow) between nodes. The DAG
has asingle entry node and asingle exit node. Thereis
also aset of machineson which nodescan execute (with
adifferent execution cost on each machine) and which
need different time to transmit data. A machine can
execute only onetask at atime, and atask cannot start
execution until all data from its parent nodes is avail-
able. Thescheduling problemisto assignthetasksonto
machines so that precedence constraints are respected
and the makespan (i.e., the length of the schedule) is
minimized. A solution to this problem is found using
an appropriately designed heuristic [15,17,19]; the so-
[ution, called schedul e, can beregarded asaquadruplet,
which, for each task, specifies the machine on which it
has been scheduled for execution, aswell as, start time
and finish time. For an example, see Fig. 1.

Previous work has attempted to characterize the ro-
bustness of a schedule; in other words, how robust the
schedulewould beif variationsin the estimates used to

build the schedule were to occur at run-time[1,3]. Al-
thoughtherobustnessmetric might be useful in eval uat-
ing overall different schedules, it haslittle direct value
for our purposes; here, we wish to use specific criteria
to select, at run-time, particular tasks before the execu-
tion of which it would be beneficial to reschedule. To
achieve this, we build on and extend two fundamental
guantities that have been used to measure robustness,
the spare time, and the slack of a node. The spare
time, computed between apair of dependent nodesthat
are either connected by an edge in the DAG (data de-
pendence), or are to be executed successively on the
same machine (machine dependence), shows what is
the maximal time that the source of dependence can
execute without affecting the start time of the sink of
the dependence. The slack of a node is defined as the
minimum spare time on any path from this node to the
exit node of the DAG. Thisis the maximum delay that
can be tolerated in the execution time of the node with-
out affecting the overall schedulelength. If the slack of
anodeis zero, the nodeis called critical; any delay on
the executiontime of thisnodewill affect the makespan
of the application.

A formal definition and an example follow below.
We note that the definitionsin [3] do not take into ac-
count the communication cost between data dependent
tasks, thereby limiting their applicability. Our defini-
tions are augmented to take into account communica
tion.

2.1. Sparetime

Consider a schedulefor agiven DAG; the sparetime
between a node ¢ and an immediate successor j is de-
fined as

Spa’reDAG(ihj) = ST(]) - DAT(Z7])7

where ST'(j) is the expected start time of node j
(on the machine where it has been scheduled to), and
DAT(i,) isthetimethat all the datarequired by node
4 from node 4 will arrive on the machine where node j
executes. To illustrate this with an example, consider
Fig. 1 and the schedulein Fig. 1(d) (derived using the
HEFT heuristic [19]). In this example, the finish time
of task 4 is 32.5 and the data transfer time from task 4
(on machine 0) to task 7 (on machine2) is8 (4* 2 =
8) time units, hence the arrival time of the data from
task 4 to task 7is40.5. The start time of task 7is45.5,
therefore, the sparetime between task 4 and task 7is5.
Thisis the maximal value that the finish time of task 4

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

/8 AN

@@

()

(d) the schedule derived by the
HEFT agorithm

255
[task [mO [m1 | m2] task [mO | ml]| m2
0 13 | 10 | 11 5 12 | 14 | 10
1 9 11 | 16 6 10 | 16 | 10
2 13 | 18 | 10 7 11 | 10 6
3 7 4 9 8 13 | 10 | 10
4 9 12 | 15

(b) the computation cost of nodes
on three different machines

| machines | time for adata unit
m0 - ml 15
ml-m2 1.0
mO0 - m2 2.0

(c) communication cost between the machines

node start nish

time time

0 0 10

1 145 235

2 10 28

3 19 28

4 235 325

5 29.5 39.5

6 34 50

7 455 515

8 575 67.5

(€) the start time and nish time of each node

in (d)

Fig. 1. An example: the schedule is generated using the HEFT agorithm [19].

can be delayed at machine 0 without changing the start
time of task 7.

In addition, for tasks 7 and j, which are adjacent in
the execution order of a particular machine (and task i
executesfirst), the sparetime is defined as

SpareSameMach(iv]) = ST(]) - FT(Z),

where F'T'(4) is the finish time of node i in the given
schedule. InFig. 1, for example, task 3 finishes at time
28, and task 5 starts at time 29.5; both on machine 2.
The spare time between themis 1.5. In thiscaseg, if the
execution time of task 3 delays for no morethan 1.5,
the start time of task 5 will not be affected. However,
one may notice that even a delay of less than 1.5 may
cause somedelay in the start time of task 6; to take this
into account, we introduce one more parameter.

To represent the minimal spare time for each node,
i.e.,, the maximal delay in the execution of the node
that will not affect the start time of any of its depen-

dent nodes (both on the DAG or on the machine), we
introduce MinSpare, which is defined as

MinSpare(i) = Vr‘nig Spare(, j)
JED;

where D; is the set of the tasks that includes the
immediate successors of task 7 in the DAG and the
next task in the execution order of the machine where
task 7 is executed, and Spare(i, j) is the minimum of
SpareDAG (Z; .7) and Spar65a7neMach (Zv])

2.2. The slack of a node

Inasimilar way to thedefinitionin [3], theslack of a
node ¢ is computed as the minimum spare time on any
path from this nodeto the exit node. Thisisrecursively
computed, in an upwardsfashion (i.e., starting fromthe
exit node) as follows:

Slack(7) = min (Slack(j) + Spare(s, j)).

VjeD;

256 R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

The dlack for the exit nodeis set equal to
Slack(iexit) = 0.

The slack of each task indicates the maximal value
that can be added to the execution time of this task
without affecting the overall makespan of the schedule.
Considering again the example in Fig. 1, the slack of
node 8 is 0; the slack of node 7 is aso zero (computed
as the slack of node 8 plus the spare time between 7
and 8, which is zero). Node 5 has a spare time of
6 with node 7 and a spare time of 9 with node 8 (its
two immediate successorsin the DAG and the machine
whereit is executing). Since the slack of both nodes 7
and 8 is 0, then the slack of node 5 is 6. Indeed, thisis
the maximal time that the finish time of node 5 can be
delayed without affecting the schedule’s makespan.

Clearly, if the execution of atask will start at atime
which is greater than the statically estimated starting
time plusthe slack, the overall makespan (assuming the
executiontime of all other tasksthat follow remainsthe
same) will change. Our rescheduling policy isbased on
thisobservation and will selectively apply rescheduling
based on the values of dack (or spare time). This is
presented in the next section.

3. A sdlectiverescheduling policy

The key idea of the selective rescheduling policy is
to evaluate, at run-time, before each task starts execu-
tion, the starting time of each node against its estimated
starting timein the static schedule and the slack (or the
minimal spare time), in order to make a decision for
rescheduling. Theinput of this rescheduler is a DAG,
with its associated values, and a static schedule com-
puted by any DAG scheduling algorithm. The objec-
tive of the policy is to optimize the makespan of the
schedule while minimizing the frequency of reschedul-
ing attempts.

As the tasks of the DAG are executed, the resched-
uler maintainstwo schedules, S; and S». S; isbased on
the static construction of the schedule using estimated
values; S, keepstrack of what the schedule looked like
for the tasks that have been executed (i.e., it contains
information about only the tasks that have finished ex-
ecution). Before each task (except the entry node) can
start execution, its (real) start time can be considered
as known. Comparing the start time that was statically
estimated in the construction of S; and the slack (or
the minimal sparetime), adecision for rescheduling is
taken. The algorithm will proceed to a rescheduling

action if any delay between the real and the expected
start time (in S;) of the task is greater than the value
of the Sack (or, in a variant of the policy, the MinS
pare). Thisindicates that, in the first variant (Jack),
the makespan is expected to be affected, wheress, in
the second variant, the start time of the successors of
the current task will be affected (but not necessarily
the overall makespan). Once rescheduling is decided,
the set of unexecuted tasks (and their associated infor-
mation) and the already known information about the
tasks whose execution has been completed (stored in
Ss) are fed to the scheduling algorithm used to build
a new schedule, which is stored in S;. The values of
Sack (or MinSpare), for each task, are subsequently
recomputedfrom S;. Thepolicy isillustrated in Fig. 2.

4. Simulation results
4.1. The setting

To eval uatethe performanceof our rescheduling pol-
icy, we simulated both variants of our rescheduling
policy (i.e., based on spare time and the slack) us-
ing four different DAG scheduling algorithms: Fastest
Critical Path (FCP) [16], Dynamic Level Scheduling
(DLS) [18], Hybrid Balanced Minimum Completion
Time (HBMCT) [17], and Heterogeneous Earliest Fin-
ish Time (HEFT) [19]. Each algorithm generates the
initial static schedule and is called again when the
rescheduler decides to remap tasks.

We have evaluated, separately, the behaviour of our
rescheduling policy with each of the four different al-
gorithms, both in terms of the performance of the final
schedule and in terms of the running time. We used
three different types of DAGs. FFT [12,19], Fork-Join
Graphs [12], and Laplace [12]. Small-sized versions
of each different type of DAG are shown in Fig. 3.
Each of the resulting 12 experiments was carried out
100times and average values were considered. In each
case, we selected, randomly, the number of tasksin the
DAG, and we generated a schedule using a number of
machines randomly chosen between 3 to 8 (with equal
probability). The static estimates for the execution
of each task on each different machine are randomly
generated from a uniform distribution in the interval
[50,100], while the communi cation-to-computation ra-
tio (CCR) israndomly chosen fromtheinterval [0.1,1].
For the actual execution time of each task we adopt
the approach in [6], and we use the notion of Quality
of Information (Qol). This represents an upper bound

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems 257

Input: an application graph ¢ and a schedule S; produced by an algorithm A
(any algorithm for DAG scheduling onto heterogeneous systems may be used)

[* Thisvariant makes use of the Sluck value to decide whether to reschedule.
Another variant could be based on MinSpare (in this case, al three occurrences
of Slack below would be replaced by MinSpare). */

Selective rescheduling policy:
(1) Mark al tasksin S; as unexecuted, Unexecuted[]
S, < thereal, post-execution schedule (initially empty)
(2) Compute for each task ¢ from S, Slack(i)
(3) While (Unexecuted[] is not empty)
t « firsttask in S}, whichisin Unexecuted[] and whose input data are available
m + the allocated machine for ¢ in schedule S,
if (¢ isnot the entry task in G)
EST + the expected start time of ¢ in schedule S;
RST « therea start timeof ¢ on m in Sy
delay < RST - EST
if (delay > Slack(1))
S1 + A(Unexecuted[], S2) /* reschedule remaining tasks*/
compute Slack for al tasksin S, aso in Unexecuted[]
t + firsttask in Sy, which isin Unexecuted[]
m + the alocated machine for ¢ in schedule S,
endif
endif
execute task ¢+ on machinem
SQ — SQ U {(t, m)}
remove task ¢ from the Unexecuted[] set
endwhile

Fig. 2. The selective rescheduler.

Gl % (5;2@9
L

(a) Fork-Join (b) Laplace equation solver (c) FFT

O

Fig. 3. Small-sized versions of 3 different types of DAGs.

on the percentage of error that the static estimate may
have with respect to the actual executiontime. So, for
example, apercentage error of 10% would indicatethat
the (simulated) run-time execution time of a task will
be within 10% (plus or minus) of the static estimate for
thetask. Inour experimentswe consider an error of up
to 50%.

4.2. Scheduling performance

Inorder to eval uate the performanceof our reschedul -
ing policy, in terms of optimising the length of the

schedule produced, we implemented both the spare
time and the slack variants, and compared the sched-
ule length they generate with three other approaches;
these are denoted by static, ideal, and always. Static
refers to the actual run-time performance of the orig-
inal schedule (which was constructed using the static
performance estimates); that is, no change in the origi-
nal static schedule takes place at run-time. Ideal refers
to a schedule, which is built post mortem; that is, the
schedule is built after the run-time execution of each
task isknown. This serves as areasonablelower bound

258

1800

T T
static —+—
ideal -

always -

Slack @

Spare --m--

1795

1790
1785
1780
1775

1770 ¢

Average makespan

1765
1760
1755

1750

1745

L L
30 35
Qol error bound(%)

%
(a) FCP

1500

55

static ——
ideal ---%---

1450

1400

Average makespan

1350 |

oL

1250

L L L
30 35 50
Qol error bound(%)

!
25

() HBMCT

55

Average makespan

Average makespan

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

1500

T T
static —+—
ideal
always
Slack
Spare

1480

1460 |
1440 |
1420 |
1400
1380 :.
1360 |

1340

1320 ! ! ! ! ! ! N X

10 15 20 25 30 35

Qol error bound(%)

55

(b) DLS

1540

1520 -

1500

1480

1460

1440 s’
1420
1400 -

1380

1360 -

1340

L L
30 35
Qol error bound(%)

! ! !
10 15 20 25 55

(d) HEFT

Fig. 4. Average makespan (over 100 runs on Laplace DAGs with 25-225 tasks and 3-8 machines) of four scheduling algorithms with dynamic

rescheduling and our rescheduling policy.

to the makespan that rescheduling can achieve. Finaly,
always refers to a scheme that reschedules al remain-
ing non-executed tasks each time atask is about to start
execution.

Theresults, for each of the four different algorithms
considered, and each different type of DAGs are shown
in Figs 4-6. We considered a Qol percentage error
between 10% and 50%. As expected, larger values
of the Qol result in larger differences between the
static and the ideal. The values of the three different
rescheduling approaches(i.e., always, and thetwo vari-
ants of the rescheduling policy proposed in this paper,
dack, spare) are roughly comparable. However, this
is achieved at a significant benefit, since our policy at-
tempts to reschedule only in arelatively small number
of cases rather than always.

Anocther interesting remark from the figures is that
reschedulingfalls short of what can be considered to be
theideal time; thisisinlinewiththeresultsin[14]. The
results also indicate that even for relatively high per-
centage errors, it is till the behaviour of the schedul-
ing algorithm chosen that has the highest impact on the
makespan. For instance, in al three types of DAGS,
even the ideal makespan obtained with FCP is worse
than the static makespan (i.e., no rescheduling), ob-
tained with the other three scheduling heuristics.

4.3. Running time

Although the three rescheduling approaches that
were compared in the previous section perform simi-
larly, the approaches based on the policy proposed in
this paper (i.e., slack and spare) achievethe sameresult

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

1460

static ——
ideal ---%---
always ---

1440 |
1420 |
1400
w30 |

1360 -

Average makespan

1340

1320

1300

L L L L L
30 35 40 45 50
Qol error bound(%)

L L L
10 15 20 25

(a) FCP

1160

55

static —+—
ideal ---%---
always ---

1140 |
1120 |
1100 |
1080 {1

1060 -

Average makespan

1040

1020

1000 L L
30 35
Qol error bound(%)

I I
20 25

L
15

10

(c) HBMCT

55

Average makespan

Average makespan

259

1200

T T
static —+—
ideal ---%---

always «---%---

1150

1100

1050 |

1000

950 |

900

L L L L
30 35 40 45
Qol error bound(%)

L L L
10 15 20 25 50 55

(b) DLS

1200

T T
static —+—
ideal ---%---

always «---%---

1150

,,,,,,

1100

1050

1000

950 L L L L L
30 35 40 45 50
Qol error bound(%)

L L L
10 15 20 25 55

(d) HEFT

Fig. 5. Average makespan (over 100 runs on Fork-Join DAGs with 7—229 tasks and 3-8 machines) of four scheduling algorithms with dynamic

rescheduling and our rescheduling policy.

(with always) at a significantly reduced cost. Table 1
shows the running time of each of the 3 approaches
and for each different algorithm, averaged over 50 runs
on all three types of DAGs with about 100 tasks each,
using Qol 20%, and scheduling on 5 machines (column
R.T in the table). It can be seen that the two variants
of our policy run at no more than 43% of the time that
is needed when rescheduling is performed after each
task. Also, the two variants of our policy attempt to
reschedul e tasks at no more than 30% of the time (note
that always would attempt to reschedule all the tasks
except the entry node, hence the value of column #R
in this case is egual to the number of tasks minus 1).
Finally, it is interesting to notice that the number of
tasks that are executed by a different machine than the
one they were allocated to in the original static sched-
ule appearsto be dependent on the scheduling heuristic

used and the type of DAGs considered (column #C in
the table). In terms of agorithm performance, HEFT
triggers rescheduling more times than the other three
DAG scheduling algorithms. Furthermore, with either
variant of our rescheduling policy, HBMCT appears
to be resulting in fewer changes of the machine that
would execute each task comparing to the static sched-
ule (see column #C; especialy visible in the case of
Fork-Join DAGS). Thisis probably duetoits good per-
formance [17], an observation that would support an
argument that those heuristics with good performance
using statically estimated execution times appear to
perform better also when there are run-time deviations
from the static execution times.

Figure 7 shows how the running time varies if Fork-
Join DAGs with up to 151 nodes are used. It can be
seen that attempting to rescheduling always leads to

260 R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems
1810 — r r r - - r 1350 — r r - - -
static —+— static —+—
ideal - ideal ---%---
1800 | always B always ---
Slack Slack
1790 i 1300 B
. 1780 g -
[©
o 2 1250 | E
£ 1770 g <
< ©
£ E
s) - g
2 1760 E = g
S e g 12001 e i
--------- X
< amsof Foe] =< S
1740 | .. R 1150 | R |
- %o
1730 1 S
S~ T
x
1720 L L L L L L L L 1100 L L L L L L L L
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55
Qol error bound(%) Qol error bound(%)
(a) FCP (b) DLS
1350 — r r r - - - r 1500 — r r r - - - -
static —+— static —+—
ideal - ideal --
| always i
1300 I “gjack
Spare 1450 e
1250 B
5 - 1400 g
g 1200 1 g
@ @
Q Q
< " <
< ; <
E 1150 - £ 1350 B
() [}
(= i<
s [
[[
> 1100 B >
< < 1300 E
1050 B
1250 b
1000 4
“x
950 1200 L L L L L L L L
10 15 20 25 30 35 40 45 50 55 10 15 20 25 30 35 40 45 50 55

Qol error bound(%)

(c) HBMCT

Qol error bound(%)

(d) HEFT

Fig. 6. Average makespan (over 100 runs on FFT DAGs with 15-223 tasks and 3-8 machines) of four scheduling algorithms with dynamic
rescheduling and our rescheduling policy.

Table 1
Average values of running time (R.T.) in msec, number of times rescheduling is attempted (#R) and number
of tasks that moved to another machine compared to the machine they were allocated to in the original static
schedule (#C) for each of three rescheduling approaches using four algorithms. The averageis calculated over
50 runs using 3 different types of DAGs each with around 100 tasks, Qol 20% and scheduling on 5 machines

Always Slack Spare
R.T. #R #C R.T. #R #C R.T. #R #C
Laplace HBMCT 3917.7 99 63.0 390.2 131 436 4805 169 429
(100 tasks) FCP 1862.9 99 388 256.0 10.7 393 3330 138 455
DLS 4971.4 9 721 3937 121 403 5680 174 511
HEFT 1898.5 99 396 609.2 236 546 8117 29.7 59.7
Fork-Join HBMCT 42584 102 238 244.0 6.8 7.6 348.6 9.4 7.8
(103 tasks) FCP 20755 102 39.7 4115 98 413 4839 116 496
DLS 5684.8 102 324 366.4 83 123 4469 105 134
HEFT 21540 102 243 4619 128 144 4939 144 157
FFT HBMCT 3546.0 94 391 3617 160 246 3929 175 235
(95 tasks) FCP 1663.9 94 345 4329 182 64.0 621.3 216 642
DLS 4189.2 94 523 4285 134 318 500.3 154 335
HEFT 1706.6 94 363 5438 220 59.0 563.1 231 613

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

Average Running Time (sec)

Number of Nodes

(a) FCP

25

Average Running Time (sec)

261

35

30

25

20

15

10

20 40 60 80 100 120 140
Number of Nodes

(b)DLS

20

15

10

Average Running Time (sec)

Average Running Time (sec)

i
20 40 60 80 100 120
Number of Nodes

() HBMCT

Number of Nodes

(d) HEFT

Fig. 7. Average running time (over 100 runs on Fork-Join DAGs with 7-151 tasks and 5 machines) of four scheduling algorithms with dynamic

rescheduling and our rescheduling policy.

faster increases in the running time than our policy. It
is worth noting that the slack variant is slightly faster
than the spare variant; this is because the slack is cu-
mulative and refersto the makespan of the schedule (as
opposed to the sparetime) and, asaresult, it will lead to
fewer rescheduling attempts (something that can also
be observed from Table 1).

5. Conclusion

This paper presented a novel rescheduling policy for
DAGs, which attemptsto reschedul e selectively (hence,
without incurring a high overhead), yet achieving re-
sults comparable with those obtained when reschedul -
ing is attempted for every task of the DAG. The ap-
proach is based on evaluating two metrics, the minimal

spare time and the slack, and is generic, in that it can
be applied to any scheduling algorithm.

Although there has been significant work in static
scheduling heuristics, limited work exists in trying to
understand how dynamic, run-time changes can affect
astatically predetermined schedule. The emergence of
workflows asimportant use casesin Grid computing as
well as new ideas and approaches related to schedul-
ing [13] are expected to motivate further and more el ab-
orateresearch into different aspectsrelated to the man-
agement of run-timeinformation.

References

[1] S.Ali, A.A.Macigjewski, H.J. Siegel and J-K. Kim, Definition
of a Robustness Metric for Resource Allocation, Proceedings
of IPDPS 2003, 2003.

262

(2

(3]

(4

(9]

(€l

(7

(8]

(9

[10]

(11

R. Sakellariou and H. Zhao / A low-cost rescheduling policy for efficient mapping of workflows on grid systems

F. Berman and R. Wolski, The AppLeS project: a status re-
port, Proceedings of 8th NEC Research Symposium, Berlin,
Germany, 1997.

L. Boloni, and D.C. Marinescu, Robust scheduling of metapro-
grams, Journal of Scheduling 5 (2002), 395-412.

R. Buyya, D. Abramson and J. Giddy, Nimrod-G: an archi-
tecture for a resource management and scheduling systemin
a global Computational Grid, in International Conference on
High Performance Computing in Asia-Pacific Region (HPC
Asia 2000), Beijing, China

R. Buyya, J. Giddy and D. Abramson, An evaluation of
economy-based resource trading and scheduling on compu-
tational power Grids for parameter sweep applications, Pro-
ceedings of the 2nd International Workshop on Active Mid-
dleware Service (AMS 2000), Kluwer Academic Press, 2000,
221-230.

H. Casanova, A. Legrand, D. Zagorodnov and F. Berman,
Heuristics for scheduling parameter sweep applications in
Grid environments, Proceedings of the Sth Heterogeneous
Computing Workshop (HCW'’00), IEEE Computer Society
Press (2000), 349-363.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Ptil, M.-H. Su, K. Vahi and M. Livny, Pegasus. Map-
ping Scientific Workflows onto the Grid, Proceedings of the
2nd AcrossGrids Conference, Cyprus, Springer-Verlag, LNCS
3165 (2004).

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh
and S. Koranda, Mapping Abstract Complex Workflows onto
Grid Environments, Journal of Grid Computing 1 (2003), 25—
39.

J. Frey, T. Tannenbaum, |. Foster, M. Livny and S. Tuecke,
Condor-G: a computation management agent for multi-
institutional Grids, Journal of Cluster Computing 5 (2002),
237-246.

A. Hoheisel and U. Der, An XML-Based Framework for
Loosely Coupled Applications on Grid Environments, Pro-
ceedings of ICCS 2003, Springer-Verlag, LNCS 2657 (2003),
245-254.

H. Hoschek, JJ. Martinez, A. Samar, H. Stockinger and
K. Stockinger, Data management in an international Data

[12]

[13]

[14]

(19]

[16]

[17]

(18]

[19]

[20]

[21]

Grid project, Proceedings of the First IEEE/ACM Interna-
tional Workshop on Grid Computing, 2000, pp. 77-90.

Y.K. Kwok and I. Ahmad, Benchmarking and comparison of
the task graph scheduling algorithms, Journal of Parallel and
Distributed Computing 59 (1999), 381-422.

J. MacLaren, R. Sakellariou, K.T. Krishnakumar, J. Garibal di
and D. Ouelhadj, Towards Service Level Agreement Based
Scheduling on the Grid, Proceedings of the Workshop on
Planning and Scheduling for Web and Grid Services, 2004,
pp. 100-102.

M. Maheswaran and H.J. Siegel, A dynamic matching and
scheduling algorithm for heterogeneous computing systems,
Proceedings of the 7th Heterogeneous Computing Workshop
(HCW’98), 1998, pp. 57-69.

A. Radulescu and A.J.C. van Gemund, Low-Cost Task
Scheduling for Distributed-Memory Machines, |EEE Trans-
actionson Parallel and Distributed Systems 13(6) (June 2002),
648-658.

A. Radulescu and A.J.C. van Gemund, On the complexity
of list scheduling algorithms for distributed memory systems,
Proceedings of the 13th ACM International Conference on
Supercomputing, ACM Press, 1999, 68-75.

R. Sakellariou and H. Zhao, A Hybrid Heuristic for DAG
Scheduling on Heterogeneous Systems, Proceedings of the
13th Heterogeneous Computing Workshop (HCW' 04), 2004.
G.C. Sh and E.A. Lee, A compile-time scheduling heuris-
tic for interconnection-constrained heterogeneous processor
architecture, |EEE Transactions on Parallel and Distributed
Systems 4(2) (February 1993), 175-187.

H. Topcuoglu, S. Hariri and M. Wu, Performance-effectiveand
low-complexity task scheduling for heterogeneous computing,
|EEE Transactions on Parallel and Distributed Systems 13(3)
(March 2002), 260-274.

H. Zhao and R. Sakellariou, An experimental investigation
into the rank function of the heterogeneous earliest finish
time scheduling algorithm, Proceedings of Euro-Par 2003,
Springer-Verlag, LNCS 2790 (2003), 189-194.

H. Zhao and R. Sakellariou, A Low-Cost Rescheduling Policy
for Dependent Tasks on Grid Computing Systems, Proceed-
ings of the 2nd Across Grids Conference, Springer-Verlag,
LNCS 3165 (2004).

