Proceedings of the 8th STAM Conference on Parallel Processing for Scientific
Computing (Minneapolis, March 1997).

Compile-Time Partitioning of Three-Dimensional Iteration
Spaces

Rizos Sakellariou®

Abstract

This paper presents a strategy for compile-time partitioning of generalised three-
dimensional iteration spaces; it can be applied to loop nests comprising two inner
nested loops both of which have bounds linearly dependent on the index of the
outermost parallel loop. The strategy is analysed using symbolic analysis techniques
for enumerating loop iterations which can provide estimates for the load imbalance,
and experimentally evaluated on a virtual shared memory parallel computer.

1 Introduction

Loop partitioning refers to this stage of the parallelisation process which deals with the
formation of groups of loop iterations that can be executed in parallel; using a scheduling
scheme, these groups are assigned to processors. Partitioning and scheduling constitute a
fundamental problem to be solved on parallel computers [13]; this is generally termed as
mapping. When mapping loop nests, it is essential to minimise overheads, such as load
imbalance, communication, etc., thus increasing performance. Traditionally, researchers
have been inclined towards run-time mapping schemes, on the basis that information not
available at compile-time may permit a more balanced distribution of the workload [4], [9],
[10], [15]. However, the latter may be achieved at the expense of additional overheads;
furthermore, in the context of parallelising compilers, where a number of decisions are
taken at compile-time, postponing the mapping phase until run-time may seriously affect
the applicability of program restructuring transformations.

In this paper we describe a scheme for compile-time partitioning of loop nests comprising
two inner nested loops both of which have bounds linearly dependent on the index of the
outermost parallel loop. The main target is the minimisation of load imbalance, however,
an attempt is also made to avoid options that may increase other sources of overhead. Load
imbalance is estimated using symbolic analysis techniques for enumerating loop iterations;
they are briefly introduced in section 2. Based on these, section 3 provides a description
of the partitioning scheme, while preliminary experimental results on a virtual shared
memory parallel computer demonstrate the efficiency of the method over other compile-time
schemes.

2 Background

The loop nests considered in this paper have the form shown in figure 1. It is assumed
that the sets of statements labelled statements.1, statements.2, ..., statements.5 do

*Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K_;
email: rizos@cs.man.ac.uk

DOALL ¢ = [y, uq
(statements.1)
DO jo = lo1% + loo, uo1% + uge
(statements.2)
DO j3 = 317 + l3272 + I33, u31% + u3z2j2 + u33
(statements.3)
ENDDO
(statements.4)
ENDDO
(statements.5)
ENDDO

Fic. 1. A canonical loop nest of depth 3.

not contain statements whose execution depends on the value of the index of a surrounding
loop; hence, the workload corresponding to each set of statements remains the same for
any iteration of the outermost loop !. It is also assumed that the third set (statements.3)
contains at least one statement, i.e. it is not empty, while the remaining sets of statements
may be empty. The outermost loop, denoted by DOALL in the figure, is parallel, that is, its
iterations can run concurrently on different processors.

Assuming that Wy, is the total amount of computation in the loop nest which is
distributed amongst p processors in such a way that each processor i, 0 < 7 < p, is assigned
an amount of computation equal to W; (clearly, Wiy, = 25’;01 W;), then we say that this
distribution exhibits a load imbalance, L, equal to

Wiot Wiot

) = Winaz — ’

p
where Wi,q, is equal to max(Wo, Wi,...,W,_1). The value of L is bounded between 0
and Wip(1 — 1/p). In the former case, that is, when, for all i, W; = Wy, /p, we say that
there exists a perfect load balance. Thus, reducing the overhead due to load imbalance is
equivalent to finding Wy, W1,...,Wp_1 such that L in (1) is minimised.

In order to compute the values of Wiy, W;,0 < i < p, we consider the computational
work corresponding to each set of statements of the loop body. Assume that Wy is the
work corresponding to the statements which are executed only by the outermost loop (i.e.,
statements.1 and statements.5), W, is the work corresponding to the statements which
are executed by the loop with index jo but not by the loop with index js (i.e., statements.2
and statements.4), and Wy, is the work corresponding to the statements which are in the
body of the loop with index j3 (i.e., statements.3); then, the total amount of work in the
loop nest, Wi, is given by

(1) L= max (WZ —

u1 ur u210+u22 w1 w21ituzy u31ttus2j2tuss
W= Wi+ > Wip+3 > > Wi
1=l 1=l jo=la1i+l22 i=l1 jo=lo1i+l2a js=l31i+l32j2+I33

The evaluation of sums such as the above depends on the number of symbolic variables
involved in the loop bounds; detailed methodologies for the symbolic evaluation of sums in
the context of parallelising compilers are described in [3], [11], [12], [14].

! This implies that the j» and/or j3 loops may be surrounded by DO ... ENDDO loops which perform the
same number of iterations regardless of the value of ¢; such loops may also exist in any of the five mentioned
sets of statements.

3 Methodology
A subclass of the loop nests shown in figure 1 is defined as follows:

DEeFINITION 3.1. Consider the loop nest shown in figure 1; this is a canonical loop
nest of depth 3, if and only if, u1 > 1 and, for all i,j2, the following inequalities always
hold

l917 + oo < U917 + Ug9
l310 + 13259 + I33 < w31t + ugzjo + uss

where, lo1 # ug1 and at least one of the differences (I31 — u31), (Is2 — u32) is non-zero 2.

Definition 3.1 provides the basis for the following theorem.

THEOREM 3.1. Consider a canonical loop nest of depth 8 as shown in figure 1; if the
index of the outermost loop can be partitioned into 2p® equal partitions, then the loop nest
can be partitioned into p partitions of equal workload.

Proof. Let n = w1 — Il1 + 1 be the number of iterations of the outer loop; since the
outer loop can be partitioned into 2p? equal partitions, then 2p? divides n. Thus, the k-th
partition of the outermost loop will perform work Wy, equal to

n
(2) Wy = ﬁWI—FIJth +IJ3WJ3,

where Ij,,I;, are the number of times the statements corresponding to work Wy,, Wy,
respectively, are executed by the k-th partition. Proceeding to the computation of a closed
formula for Iy,,I;,, we have to evaluate the summations

U u21i+u22
I, = > > 1,

1=l ja=l21i+122

U u21ituze U31ituz2jetuss
Iy = > > > L

1=l ja=l21i+l22 j3=l31i+l32j2+133

where Iy = I + kn/2p? and uy, = I; + (k + 1)n/2p? — 1. Since the loop nest is canonical
by hypothesis, the upper bound of any of these sums is always greater than or equal to the
corresponding lower bound. Thus, evaluating the sums, we get

I;, = Ak + Ag,
I, = Aogsk® + Ak + Aos,

for A;; constants. Therefore, equation (2) can be rewritten as
n
Wi = 5aWi+ (Auk+ Ag) Wy, + (Assk? + Assh + Ags) W,
n
— 2pﬁVV] + AOQWJ2 + A03WJ3 + (AlQWJ2 + A13WJ3) k+ A23WJ3k2
= Cp+ Cik + Cok2,

where Cy, C1, Cy are constants.

2 This restriction guarantees that the number of iterations of each inner loop depends on the value of
the index of at least one of the surrounding loops.

We assume that there is a way of grouping the 2p? partitions along the index of the
outermost loop into p partitions of equal workload; we call the latter partitions of the loop
nest (as opposed to partitions along the index of the outermost loop). We further assume
that each partition &', 0 < k' < p — 1, of the loop nest consists of 2p?/p = 2p partitions
along the index of the outermost loop and performs work W),; then, for all &', it must be
the case that

Wi =Wl=Wi=..=W_,.
Let Sy = {Sw'1,5k'2,---,Sk2p} be the set of partitions along the index of the outermost
loop which compose the k’-th partition of the loop nest; clearly, the integers s;;, 0 < < p,
1 < j < 2p (that is, the elements of all the sets Sy, 0 < k' < p), are a permutation of the
integers 0,1,2,...,2p* — 1. Then, the workload, W},, of the k'-th partition of the loop nest
is given by

2p 2p
Wis = Wiy + Way + oo Wiy = > Wy, =3 (Co + Crspi + Cashy) -
i=1 i=1

Since, for any two distinct partitions z,y of the loop nest, 0 < z,y < p and = # v,
W, =W, <= W, — W, =0, we have

2p 2p
Wé — Wg; = Z (Co + C18zi + C25§z’) — Z (Co + Clsyi + 023131')
Zszl =1
= Z (Cl(sm' — syi) + Ca(s; — Szz))
=1

2p 2p 2p 2p
= sti _Zsyi Ci+ 235261 _Zszi Cs.
i=1 i=1 i=1 i=1
The above expression must be equal to zero. A solution is given when the coefficients of

C1,C5 are both equal to zero. In this case, the problem reduces to solving the following
system of equations:

2p 2p
D se = D sy
i=1 i=1
2p 2p
2 2
Dsa = DSy
i=1 i=1
Generalising the above for all partitions of the loop nest, we get the system
2p 2p 2p 2p
Dosoi = D su= D s = . =) S
i=1 i=1 i=1 i=1
2p 2p 2p 2p
2 2 2 2
DS = XSt = Xsmo= - =) S
i=1 i=1 i=1 i=1
Thus, all sets Sy, 0 < k' < p, must have equal sums of their elements and equal sums of
the squares of their elements. Hence, if we find a method of partitioning all the integers

from 0 to 2p? — 1 into the p sets Sp, S1,...,Sp—1 so that (3) holds, the Theorem has been
proved. We consider the p pairs given by

3)

{2pi + (k' + i) mod p,2p(i + 1) — 1 — (k' + %) mod p},

DOALL I=1,N
DO J=3,2%I+1
DO K=J+2,5xI
(statements)
ENDDO
ENDDO
ENDDO

Fic. 2. An example of a canonical loop nest of depth 3.

where 0 < 7 < p. We observe that the sum of the elements of each pair is independent of
k'. Furthermore, the sum of the squares of the elements of all the pairs is constant; this is
because, for all k', 0 < k' < p, the value of

(K" + 0) mod p)? + ((K" + 1) mod p)? + ((k' +2) mod p)? + ...+ (k" + p — 1) mod p)?

is equal to
0 +124+22+... 4+ (p—1>2

Given also that, for all 4, k', any two such pairs have different elements, we have found a way
of partitioning the integers 0,1,2,...,2p% — 1 such that it yields a solution to (3). Hence,
the set of partitions along the index of the outer loop which compose the k'-th partition of
the loop nest is given by

S = {2pi+ (K +i)modp:0<i<p}U
(4) {2p(i+1)—1— (K +i)modp:0<i<p}.
Therefore, the loop nest can be partitioned into p partitions of equal workload. 0

In order to illustrate the results of Theorem 3.1, consider the loop nest shown in figure
2. Assuming that N > 1, then the inequalities 3 < 2*I+1 and J+2 < 5*I always hold, while,
for each inequality, the coeflicients of I are non-zero; hence, the requirements of Definition
3.1 are satisfied and the loop nest is a canonical loop nest of depth 3. Based on Theorem
3.1 and assuming that the number of iterations of the outer loop, N, is a multiple of 2p?,
where p is the number of processors, partitioning the loop nest according to (4) leads to
perfect load balance.

To provide an intuitive view of this partitioning scheme, the corresponding geometrical
representation of the original loop nest is shown in figure 3.a. Assuming that two processors
are used, the index of the outer loop is partitioned into 2 - 22 = 8 partitions; the
corresponding polytope for each partition is shown in figure 3.b. Then, applying (4), the
first processor is assigned partitions 0, 3, 5, and 6, while the second processor is assigned
partitions 1, 2, 4, and 7; in geometrical terms, the polytopes have been assigned to two
groups in such a way that the total volume of the polytopes in each group is the same.

The partitioning technique suggested in the proof of Theorem 3.1 can also be applied
when the number of iterations of the outer loop, n, is not a multiple of 2p?; in this case,
assuming that partitioning along the index of the outermost loop is performed as evenly
as possible (that is, each partition has a number of iterations which differs by at most 1
from that of any other partition), a small value of load imbalance is expected. Theorem
3.1 can also be extended to cover cases where there are more than one inner loops at the
same level (i.e., loops which are surrounded only by the same outer loops) whose bounds

S ————————, .

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(135) -

(N,35N)

a) Unpartitioned loop nest. b) Partitioning into 8 partitions.

Fic. 3. Geometrical representation of the loop nest shown in F1G. 2.

DO J=1,N
DO I=1,J
DO K=I,J
A(T,J)=A(I,J)+B(I,K)*C(K,J)
ENDDO
ENDDO
ENDDO

Fic. 4. Upper Triangular Matriz Multiplication.

depend on the index of a surrounding loop; the necessary requirement is that, for any loop,
the lower bound is always less than or equal to the upper bound. Finally, in the general
case, where not all the inequalities in Definition 3.1 hold, index set splitting can be applied
to transform the original loop nest into multiple adjacent loop nests, each of which satisfies
the requirements of Definition 3.1 [12].

4 Experimental Results

In order to evaluate the performance gains of the partitioning strategy described in the
previous section, we consider the parallelisation of the code shown in figure 4, which
corresponds to the multiplication of two upper triangular n X n matrices [6] (the two
outer loops have been interchanged in order to increase the number of unit stride array
references). Clearly, the loop nest is canonical (see Definition 3.1), and, given that it has
a depth of 3, a partitioning scheme based on the proof described in Theorem 3.1 may lead

TABLE 1

Ezxecution time (in seconds) of upper triangular matriz multiplication for various mapping
schemes on the KSR1.

Mapping Number of processors

N scheme 1] 2] 4] 8] 12 16

256 KAP 4.03 3.64 | 2.78 1.711 1.12 0.97
MARS 3.99 3.63 2.76 1.68 1.06 0.95
CcYC 4.02 2.05 1.07 | 0.55 | 040 | 0.35
CAN 3.99 2.03 1.04 | 0.51 0.38 0.29

1024 | kAP 527 458 308 174 128 110
MARS 524 457 310 179 130 113
CcYC 525 267 154 69 55 49
CAN 524 265 152 66 46 36

to perfect load balance. We compared this scheme (henceforth denoted by CAN) with three
other compile-time mapping schemes, subsequently denoted by the shorthands KAP, MARS,
and CYC; KAP corresponds to the mapping strategy of the KAP auto-parallelising compiler
(which is based on scheduling chunks of consecutive iterations having a fixed size), MARS
corresponds to the mapping strategy of the MARS experimental parallelising compiler [2]
(which is equivalent to compile-time partitioning into a number of chunks of consecutive
iterations equal to the number of processors), and CYC corresponds to a cyclic (or wrap
[5]) way of mapping the iterations onto processors (i.e., processor 0 executes iterations
1,p+1,2p+1,..., processor 1 executes iterations 2,p + 2,2p + 2,..., in general, processor
i, 0 <1 < p— 1, executes iterations i + 1 + kp,k = 0,1,2,...,n/p — 1).

The parallelised programs were run on a KSR1, using two different values for N, 256
and 1024; their execution time is shown in Table 1. In both cases, KAP and MARS perform
worst of all while CAN performs best. The performance of CYC is comparable with that of
CAN when using a relatively small number of processors; for more than 12 processors, CYC
causes a large number of cache misses.

5 Conclusion

The partitioning strategy described in this paper provides a mechanism for balancing the
load of three-dimensional iteration spaces. Comparing to cyclic schemes of partitioning [5],
the advantage of the presented scheme is that it is based on forming groups of consecutive
iterations, an approach which is likely to reduce false sharing effects on certain machines
[8], [9]. Furthermore, the presented scheme partitions the iterations of the outermost loop
into equal (or almost equal) parts (as opposed to approaches analogous to balanced chunk
scheduling [7]), which may be preferable for exploiting data parallelism at the program
level.

References

[1] U. Banerjee, Loop Transformations for Restructuring Compilers: The Foundations, Kluwer
Academic Publishers, 1993.

[2]

[3]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

F. Bodin, M. O’Boyle, A Compiler Strategy for Shared Virtual Memories, in B. K. Szymanski,
B. Sinharoy (Eds.), Languages, Compilers and Run-Time Systems for Scalable Computers,
Kluwer Academic Publishers, 1996, pp. 57—69.

P. Clauss, Counting Solutions to Linear and Nonlinear Constraints through Ehrhart polyno-
mials: Applications to Analyze and Transform Scientific Programs, Proceedings of the 1996
International Conference on Supercomputing (Philadelphia, May 1996), ACM Press, pp. 278-
285.

S. Flynn Hummel, E. Schonberg, L. E. Flynn, Factoring: A Method for Scheduling Parallel
Loops, Communications of the ACM, 35 (8), Aug. 1992, pp. 90-101.

A. Gerasoulis, I. Nelken, Scheduling Linear Algebra Parallel Algorithms on MIMD Architec-
tures, in J. Dongarra, P. Messina, D. C. Sorensen, R. G. Voigt (Eds.), Proceedings of the 4th
SIAM Conference on Parallel Processing for Scientific Computing, STAM, 1989, pp. 68-95.

G. H. Golub, C. F. Van Loan, Matriz Computations, The Johns Hopkins University Press,
1989.

M. R. Haghighat, C. D. Polychronopoulos, Symbolic Analysis for Parallelizing Compilers, ACM
Transactions on Programming Languages and Systems, 18 (4), July 1996, pp. 477-518.

W. Li, Compiler Optimizations for Cache Locality and Coherence, Technical Report 504,
Department of Computer Science, University of Rochester, Apr. 1994.

D. J. Lilja, Ezploiting the Parallelism Available in Loops, Computer, 27 (2), Feb. 1994, pp.
13-26.

C. D. Polychronopoulos, D. J. Kuck, Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers, IEEE Transactions on Computers, 36 (12), Dec. 1987, pp. 1425
1439.

W. Pugh, Counting Solutions to Presburger Formulas: How and Why, Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design and Implementation (Orlando,
June 1994), ACM SIGPLAN Notices, 29 (6), June 1994, pp. 121-134; also available as Technical
Report CS-TR-3234, Department of Computer Science, University of Maryland, Mar. 1994.
R. Sakellariou, On the Quest for Perfect Load Balance in Loop-Based Parallel Computations,
PhD Thesis, Department of Computer Science, University of Manchester, U.K., 1996.

V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors, Research
Monographs in Parallel and Distributed Computing Series, MIT Press, 1989.

N. Tawbi, Estimation of Nested Loops execution time by Integer Arithmetic in Convexr Poly-
hedra, Proceedings of the 8th International Parallel Processing Symposium, IEEE Computer
Society Press, 1994, pp. 217-221.

T. H. Tzen, L. M. Ni, Trapezoid Self-Scheduling: A Practical Scheduling Scheme for Parallel
Computers, IEEE Transactions on Parallel and Distributed Systems, 4 (1), Jan. 1993, pp.
87-98.

