
6

A Control Theoretical Approach to
Self-Optimizing Block Transfer in Web
Service Grids

ANASTASIOS GOUNARIS

Aristotle University of Thessaloniki

CHRISTOS YFOULIS

Alexander Technological Educational Institute of Thessaloniki

RIZOS SAKELLARIOU

University of Manchester

and

MARIOS D. DIKAIAKOS

University of Cyprus

Nowadays, Web Services (WS) play an important role in the dissemination and distributed pro-
cessing of large amounts of data that become available on the Web. In many cases, it is essential
to retrieve and process such data in blocks, in order to benefit from pipelined parallelism and re-
duced communication costs. This article deals with the problem of minimizing at runtime, in a
self-managing way, the total response time of a call to a database exposed to a volatile environ-
ment, like the Grid, as a WS. Typically, in this scenario, response time exhibits a concave, nonlinear
behavior depending on the client-controlled size of the individual requests comprising a fixed size
task. In addition, no accurate profiling or internal state information is available, and the optimum
point is volatile. This situation is encountered in several systems, such as WS Management Systems
(WSMS) for DBMS-like data management over wide area service-based networks, and the widely
spread OGSA-DAI WS for accessing and integrating traditional DBMS. The main challenges in
this problem apart from the unavailability of a model, include the presence of noise, which incurs
local minima, the volatility of the environment, which results in moving optimum operating point,
and the requirements for fast convergence to the optimal size of the request from the side of the
client rather than of the server, and for low overshooting. Two solutions are presented in this work,
which fall into the broader areas of runtime optimization and switching extremum control. They

This work has been supported by the EU-funded CoreGrid Network of Excellence project through
grant FP6-004265. Dr. Yfoulis has been supported by the ATEI grant 6/24/4-7-2007 entitled “Adap-
tive QoS control of optimization and computing systems.”
This work was conducted while A. Gounaris held a visiting lecturer position with the University of
Cyprus and a researcher position at the University of Manchester.
Author’s email: gounaris@cs.man.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1556-4665/2008/05-ART6 $5.00 DOI 10.1145/1352789.1352791 http://doi.acm.org/
10.1145/1352789.1352791

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:2 • A. Gounaris et al.

incorporate heuristics to avoid local optimal points, and address all the aforementioned challenges.
The effectiveness of the solutions is verified via both empirical evaluation in real cases and simu-
lations, which show that significant performance benefits can be provided rendering obsolete the
need for detailed profiling of the WS.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.4.0 [Information Systems Applications]: General

General Terms: Performance

Additional Key Words and Phrases: Autonomic computing, data grids, extremum control, control
theory, Web Services, OGSA-DAI

ACM Reference Format:

Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M. D. 2008. A control theoretical approach to
self-optimizing block transfer in Web service grids. ACM Trans. Autonom. Adapt. Syst. 3, 2, Article 6
(May 2008), 30 pages. DOI = 10.1145/1352789.1352791 http://doi.acm.org/10.1145/1352789.
1352791

1. INTRODUCTION

The proliferation of Web Service-based Grids and the increasingly growing vol-
ume of data that is processed by, and shared among, such Grids gives rise to
the need for the development of more robust techniques for the manipulation
of large data volumes in autonomous unpredictable environments that adopt
service-oriented architectures. Thus far, the emphasis has been on architec-
tures for the execution of SQL-like queries that span multiple Web Services
(e.g., Liu et al. [2003a]; Alpdemir et al. [2003] and Narayanan et al. [2003]),
wide area query optimization (e.g., Srivastava et al. [2006] and Gounaris et al.
[2005]) and the associated resource scheduling decisions (e.g., [Gounaris et al.
2006]). However, an important factor is the optimization of the cost of calls to
WS, which is largely dependent both on the size of the request (the size of the
data block transferred between services) [Srivastava et al. 2006; Alpdemir et al.
2005], and on the network bandwidth. This is due to the fact that the response
time of a remote server serving a series of calls with a fixed total size is char-
acterized by a highly noisy, concave graph with regards to the size of the data
chunks or blocks returned by the server. This graph has a different optimal
point for different queries and/or different connections, or even different stages
of the same query.

Consider for example the case in which a database is globally exposed as a
WS through OGSA-DAI wrappers [Antonioletti et al. 2005]. Clients can retrieve
data from this database by submitting requests containing SQL queries to the
associated WS. When the resulting set is relatively large (larger than 1–3MB
in the current release), then it must be returned in chunks to avoid out-of-
memory errors and speed up transmission. Block-based data transmission is
also the first choice when the data must be processed at the client side while it
is being received in a pipelined fashion. As explained in Section 2, and reported
in Alpdemir et al. [2005], the response time first decreases when the block
size is increased and after a point it starts increasing. Similar behavior for
other data management WS is reported in Srivastava et al. [2006]. Note that
concave graphs can describe other aspects of the behavior of Web Services and
Web Servers, in general. An example is the response time of an Apache Web

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:3

Server with regards to the number of maximum clients allowed to be connected
simultaneously to it [Liu et al. 2003b].

In this article we examine the OGSA-DAI case. The objective is to minimize
at runtime, the total response time of a query by continuously tuning the size
of the data blocks that are requested by the client from an OGSA-DAI WS in a
self-managing way. We follow a control theoretical approach to this problem. In
principle, autonomic computing can benefit a lot from control theory techniques,
which are well-established in engineering fields and typically accompanied by
theoretical investigations of properties such as stability, accuracy, and settling
time [Diao et al. 2005]. Autonomic systems encapsulate components that mon-
itor their environment to collect feedback, analyze the feedback collected, plan
responses, and enforce such responses by changing the configuration of the
self-managing system. Control systems operate in a similar way, despite any
differences in the terminology. In control systems, the main component is the
controller, which receives system measurements as its input, and outputs a sys-
tem configuration that impacts on the system performance, termed as control
input.

A distinctive feature of our work is that the controller resides on the client
rather than on the server. A main challenge in this case-study is that the entity
to be configured is exposed as an unknown black box to the controller. A main
consequence of this fact is that any solutions developed must operate well in
the absence of a parameterized model that describes the behavior of the ser-
vice. Another consequence is that any scope of using heuristics based on more
detailed monitoring and internal state information of the server (e.g., as in Liu
et al. [2003b]) is eliminated. In other words, the only information about the
controlled entity is restricted to the measured output, which is the response
time of the request of the caller. However, the main benefit is that the mea-
sured output is the metric that most interests the user, since it includes the
transmission cost over the network, and, as such, describes the performance
from the user’s point of view precisely. This comes at the expense of additional
noise and jitter in the measured output, which are inherent in measurements of
communication costs across unstable, volatile connections. The noise results in
local peaks and nonmonotonic behavior on both sides of the optimal point, ren-
dering naive hill climbing techniques nonappealing. Finally, the convergence of
any algorithm must be fast with low overshooting (not reaching extreme values
in the transient phase while converging) and devoid of oscillations to the ex-
tent possible; otherwise serious performance degradation and out-of-memory
errors, respectively, can occur.

The main contribution of this work is threefold.

—First, to present fast and robust optimization algorithms that belong to the
area of runtime optimization and switching extremum control [Draper and
Li 1954; Blackman 1962], and that are capable of quickly converging to the
optimal point despite the presence of local optimum regions, noise, and bad
choices for the starting point;

—second, to apply the aforementioned algorithms to the OGSA-DAI case, and
conduct experiments to evaluate them; the evaluation results prove that the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:4 • A. Gounaris et al.

algorithms are robust, effective, and are characterized by high convergence
speed; there are significant benefits in the response time in the generic case,
where the optimal region of block size is not a priori known; moreover, the
algorithms can yield improved performance even in the more limited scenario
where this region can be approximated;

—third, to complement the empirical evaluation with thorough simulation ex-
periments, which, in several cases, make different assumptions with respect
to the environmental conditions; simulations help us to study in depth the
behavior of the algorithms presented, eliminating interference from uniden-
tified factors that are inherent in wide area systems; these simulations shed
light on several strengths and weaknesses of the algorithms that empirical
evaluation cannot reveal, and thus make it easier for developers to adjust
the same solutions to other problems.

The results of this work render the process of calling services self-managing.
The need for detailed WS profiling and fine tuning therefore becomes obso-
lete. The technique presented is applicable to any optimization problem with
characteristics similar to those elaborated in Section 2; OGSA-DAI services are
presented merely as a case study.

Note that complementary efforts to minimize the data transfer cost are de-
scribed in Seshasayee et al. [2004] and Kosar and Livny [2004]. The former sug-
gests improvements to the basic communication mechanism for WS, whereas
the latter investigates solutions based upon runtime selection of the transfer
protocol. In addition, in order to avoid poor performance, it is possible to use
WS only for control while the actual data transfer is done via other file transfer
mechanisms (e.g., based on SSH).

The remainder of the article is structured as follows. Section 2 presents the
OGSA-DAI approach in brief and measurements that motivated the research.
The solution to the optimization problem is presented in Section 3. Section 4
deals with the evaluation. Related work is discussed in Section 5, and Section
6 concludes the article.1

2. THE OGSA-DAI APPROACH

OGSA-DAI services aim at showing different data resources, such as relational
and XML DBMSs, and raw files, in the form of WS, which are called Data Ser-
vices (DS) [Antonioletti et al. 2005]. A single Data Service can provide access to
multiple data resources. This interaction is enabled through the so-called Data
Service Resources (DSR), which implement the core OGSA-DAI functionality. A
client or another WS can direct “perform” documents at an OGSA-DAI DS. The
protocol used is SOAP over HTTP and the perform document is in XML. Subse-
quently, a DSR accepts, parses, and validates this document, executes the data-
related activities specified within it, and constructs the response documents.

The activities described in the perform document also define the data delivery
mechanism. Several modes are supported; here we investigate only the pull

1A short version of this work with more limited empirical evaluation and no simulations has
appeared in Gounaris et al. [2007].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:5

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000

blocksize (#tuples)

re
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
)

Fig. 1. Response times for a local query returning 100K tuples for different block sizes (tuple-
length = 100 bytes/tuple).

mode. In this mode, the client sends requests to the service, which, as a response,
returns all the results either in one big chunk, or in smaller blocks. In OGSA-
DAI the block size is in tuples. The advantage of the former case is that the
client sends just a single request, whereas, in the latter case, the client sends
a series of requests until the complete result set is retrieved. Nevertheless, the
advantage of the latter case is that first, it can handle large volumes of data
that cannot entirely fit into main memory, and second, it allows for pipelined
post-processing at the client’s side. Retrieving the result set in a block-based
pull mode is therefore more widely applicable.

Suppose a query returns to a local client, 100,000 tuples of 100 bytes each,
and that the client can configure the block size for the whole duration of the
query results transmission. Figure 1 illustrates the response times for this
query for different block sizes. The values shown are the averages over 5 runs
on a machine with 512MB memory and 2.4GHz CPU speed. They are measured
at the client side and they correspond to the cost of sending as many requests
as required to retrieve the complete result set and getting back the response
from the server. The WSRF2 2.2 flavor of OGSA-DAI is used; the simple WS
flavor could have been used with no difference, since both employ the same
asynchronous data transfer mechanism using the SOAP over HTTP protocol.
In this setting the optimum block size is around 6000 tuples. For this size, the
response times are approximately four times lower than when the block sizes
are a few hundred tuples. The sharp increase in response time with block sizes
larger than 10K tuples is due to memory shortage.

Figure 2 shows the response times for the same query in a different setting.
The server now is on a machine with 3.2GHz CPU speed and 1GB memory, and
the client is remote (the server is in the UK, whereas the client is in Cyprus).
No other applications are running at the server side. We can observe that the
optimum point has moved to around 10K tuples and the optimum size of the
previous case now yields approximately 20% worse performance. In another

2http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:6 • A. Gounaris et al.

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
)

Fig. 2. Response times for a remote query returning 100K tuples for different block sizes (tuple-
length = 100 bytes/tuple).

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
s
p

o
n

s
e

 t
im

e
 (

m
se

c
s)

Fig. 3. Response times for a remote query returning 100K tuples for different block sizes (unstable
connection, tuple-length = 100 bytes/tuple).

setting, where the client and the server are connected through an unstable
wireless connection, the optimum point is modified to approximately 8000 tu-
ples, as shown in Figure 3.

All these figures reveal a common pattern: the performance first improves (in
a non-monotonic fashion) with increased block sizes, and after a point it starts
degrading. It cannot be easily verified exactly which factors are responsible for
this; in network applications of this kind the responsibility is diffuse. However
sending fewer blocks means that the total amount of requests transmitted is
reduced, which can improve performance. On the other hand, larger chunks of
data require more resources, such as internal buffers, at the server side, which
may start becoming stretched, resulting in lower response times. This is why
the concave effect also exists in local settings, as shown in Figure 1.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:7

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
)

run1

run2

run3

Fig. 4. Response times of individual runs of a remote query returning 100K tuples for different
block sizes (unstable connection, tuple-length = 100 bytes/tuple).

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
)

Including XML

processing

Excluding XML

proc.

Fig. 5. Response times for a remote query returning 100K tuples for different block sizes (unstable
connection, double tuple size: tuple-length = 200 bytes/tuple).

From these figures, it has become obvious that in different settings, in terms
of different server-client pairs, the optimum data block size changes. In addi-
tion, the noise is high and as a result, on both sides of the optimal point there
may exist local optimal points, which must be overcome by the self-optimizing
mechanism. This is more evident in Figure 4, which shows three out of the
five runs, the aggregate of which is in Figure 3. Profiling of each pair of nodes
cannot be sufficient. This is because of two reasons. First, the resources are
nondedicated in general, which means that the service response time and net-
work bandwidth are subject to frequent unpredictable changes. Moreover, the
optimal point also depends on the length of the tuples in the result set, which is
query-dependent. For example, in Figure 5 the response times are presented for
the same setting as in Figure 3 with the only difference that the tuple length

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:8 • A. Gounaris et al.

Table I. Summary of Response Times for a Local Query for Different Block Sizes

Including 1st Block Without 1st Block
Block Size Average Stdev Tuple Cost Average Stdev Tuple Cost
4001 1330 455 0.33 1242 102 0.31
4500 1491 428 0.33 1404 167 0.31
5001 1314 508 0.26 1203 153 0.24
6000 1560 638 0.26 1400 146 0.23
7000 2135 706 0.3 1944 146 0.28
8000 2426 706 0.3 2220 165 0.28

Table II. Summary of Response Times for a Remote Query for Different Block Sizes

Including 1st Block Without 1st Block
Block Size Average Stdev Tuple Cost Average Stdev Tuple Cost
4001 5198 1014 1.3 5146 996 1.29
4500 5386 856 1.2 5295 706 1.18
5001 6334 1750 1.27 6287 1782 1.26
6000 7337 1327 1.22 7260 1312 1.21
7000 8154 1724 1.16 8026 1696 1.15
8000 9636 1673 1.2 9459 1570 1.18

is doubled. We can observe that the optimum block size has changed in this
case as well. In Figure 5, two plots are depicted, one that takes into account
the XML processing of the SOAP messages that are used to convey the results,
and one that presents the aggregate response time, as in all figures thus far. It
is shown that the shift of the optimum size, when compared against Figure 3,
is not due to a change in the XML processing cost: if another, non-XML-based
protocol is employed instead of SOAP, the same phenomenon will appear.

The impact of the volatility of network connections and of noise are sum-
marized in Tables I and II, which correspond to Figures 1 and 5, respectively.
In the tables, it can be seen that the standard deviation in the measurements
is high enough to mislead a simple optimizer, performing hill-climbing for in-
stance, as to whether increasing the block size is profitable or not. Discarding
the cost of the first block, which includes the submission of the query on the
service side, has little effect in remote cases. Applying simple hill-climbing or
rule-based techniques (e.g., fuzzy control) is therefore unsuitable in this case.
Also, when 100K tuples are transferred and the optimal size is around 6–8K
tuples, it means that the query will be finished in less than 20 cycles. As a
result, a further requirement is for fast convergence. This leaves little scope
for system identification and sampling that would allow for parameterization
of an analytical model, based on which the optimum point can be estimated.
Overshooting must also be low; otherwise either out-of-memory errors might
occur, or the performance degradation due to a few cycles with a block size near
the point where the system runs out of memory cannot be outweighed by future
optimized decisions, since the number of overall cycles is small.

3. ONLINE ADJUSTMENT

If y is the performance metric to be optimized, such as response time or equiv-
alently, the per tuple cost in time units, and x the size of the data block, we

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:9

y = f(x)

Controller

ykxk

Fig. 6. A self-tuning system based on extremum control.

assume that there exists a function f for which

y = f (x) + e,

where e represents the noise. We further assume that e is responsible for the
local peaks on both sides of the optimal block size.

To explain the concave shape, it can be also assumed that, at least in the
neighborhood of the optimal point, there is a quadratic function

f (x) = a(x − x∗)2 + b,

where a, b, and x∗ are unknown constants.
The optimal point is the value of x for which the derivative of f (x) is zero:

� f (x) = 0. Obviously, this value is x∗.
In this article, two main approaches are investigated, neither of which relies

on the precise knowledge of a, b, and x∗. The first is a typical numerical opti-
mization method, while the second comes from the field of extremum control.
In both approaches, in one adaptivity cycle or step, the time needed to transmit
a data block of a known size is collected as feedback and a new value for the
block size is calculated by the controller (see Figure 6).

3.1 Runtime Optimization

The runtime optimization method is inspired by Newton’s technique [Persinni
1988], which estimates, at each step, the next value of the block size, based on
its previous values and the derivatives of x and y . More specifically, it defines
that the value of x at the kth step xk is given by the following formula

xk = xk−1 − � f (xk−1)
�2 f (xk−1)

. (1)

The second partial derivative (�2) in the denominator of the fraction allows
for quick convergence. A nice characteristic of this method is that, if noise is
eliminated and y = f (x) indeed, then the algorithm converges in one step,
since

� f (xk−1) = 2a(xk−1 − xo)

and

�2 f (xk−1) = 2a.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:10 • A. Gounaris et al.

However, the main drawback is that Newton’s method is known to be very
sensitive to noise, whereas, in the case examined in this article, the noise not
only exists but is also non-negligible. Moreover, the behavior of the system may
have some quadratic characteristics, but this does not mean that a quadratic
function, the parameters of which are unknown anyway, can describe it accu-
rately. The unavailability of a model leads to an approximate estimate of the
partial derivatives using backward difference operators �u = uk − uk−1:

� f (k) � �y
�x

= yk − yk−1

xk − xk−1
.

It was mentioned previously that the main challenges in the problem investi-
gated in this article include, apart from the unavailability of a model, the pres-
ence of noise and the volatility of the optimum block size, even at an intrarun
level. To mitigate the impact of the noise in the graphs, the measured output
and the control input are first averaged over a sequence of n measurements.
This may reduce the speed of response to changes. Hence, a proper choice of
the averaging horizon must be made to trade off speed of response with noise
removal. This is further discussed in the following sections. To facilitate the
controller’s ability to continuously probe the block size space (since the opti-
mum point may move during query execution), a dither signal d (k) = df · w(k)
is added, where df is a constant factor, and w a pseudo-random variable that
follows a Gaussian distribution with mean 0 and standard deviation 1. Instead
of using Equation (1) as it is, the value of the block size at each step is calculated
by the controller as follows:

xk = xk−1 − � yk−1

�2 yk−1
+ d (k), (2)

where the average measurements x̄k and ȳk are given by

x̄k = 1
n

k−n+1∑

i=k

xi and ȳk = 1
n

k−n+1∑

i=k

yi, respectively.

3.2 Extremum Control

The second approach we investigate is inspired by extremum control, which
can yield results and track a varying optimum operating point even in the ab-
sence of a detailed analytic model. The role of an extremum controller is to
manipulate the input x to the performance function f (x), as a function of this
output, as shown in Figure 6. Extremum control is based upon numerical opti-
mization, but goes beyond that since it can be blended with well known control
approaches, including variable setpoint (optimum tracking) controllers, feedfor-
ward controllers, perturbation analysis, self-tuning, and adaptive techniques,
so that noise, model uncertainties and time variations can be dealt with. Filter-
ing and averaging are also typically included in the aforementioned techniques.
There is a rich literature and many different methodologies and applications
[Ariyur and Krstic 2003; Wellstead and Zarrop 1995; Larsson 2001].

In this article, due to the difficulties mentioned in the previous sections,
we decided to initially experiment with a simple and straightforward scheme,
called switching extremum control.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:11

Two flavors are examined; both can be described by

xk = xk−1 − g · sign(� yk−1�xk−1) + d (k), (3)

where g is the gain, and the function sign(.) returns 1 for positive arguments
and −1 for negative ones.

This formula can detect the side of the optimum point where the current
block size resides. The rationale is that the next block size must be greater
than the previous one, if in the last step, an increase has led to performance
improvement, or a decrease has led to performance degradation. Otherwise, the
block size must become smaller. In the first flavor, g = b1 is a constant positive
tuning parameter. Without applying a dither signal, the step size is always
the same, and since the absolute value of �x, ‖�x‖, is equal to b1, b1 defines
the rate at which x is modified.

In the second flavor

g = b2

∥∥∥∥
� yk−1

yk−1
�xk−1

∥∥∥∥, b2 > 0, (4)

where b2 is constant. In this case, the step size (gain) is adaptive and is pro-
portional to the product of the performance change and the change in the block
size. As in the first approach, it is important to limit the effect of noise around
the optimum point, since very small changes in the block size in Equation (4)
may induce a high noise to signal ratio. To this end, averaging is applied in
this case as well. On the other hand, the convergence or the tracking ability of
our iterative algorithm should not be harmed. Moreover, high overshooting and
sustained oscillations are highly undesirable. These issues are investigated and
discussed in the sequel. In both approaches, maximum and minimum limits can
be imposed to avoid the detrimental effects of overshooting.

4. EVALUATION

4.1 Prototype Implementation and Results

To test the actual performance of the techniques described, a thin client is built
that can submit SQL queries to an OGSA-DAI DS. The client requests results
to be delivered in blocks using SOAP/HTTP. The block size is determined by the
client and can change during the delivery of the same result set. The data come
from the TPC-H database3 (scale 1) stored in a MySQL DBMS. Five queries
are used throughout, as shown in Table III. Note that the actual tuple length
communicated across the network is significantly increased by the XML tags,
as reported in Dobrzelecki et al. [2006]. All queries are simple scan queries
without joins, so that the computational load in the server is minimal and,
as a result, the time to produce a block is negligible and does not affect the
measurements.

The experimental setup is as follows, unless explicitly mentioned. The server
is in Manchester, UK and the client is in Greece. The client is connected to the
Internet through a wireless connection. The server’s CPU speed is 3.2GHz and

3http://www.tpc.org/tpch/

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:12 • A. Gounaris et al.

Table III. The Characteristics of the Example Queries

ID #Tuples Retrieved Avg Raw Tuple Size
Q1 150000 27 bytes
Q2 150000 65 bytes
Q3 200000 57 bytes
Q4 450000 4 bytes
Q5 1000000 2 bytes

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

block size (#tuples)

re
s
p
o
n
s
e
 t

im
e
 (

s
e
c
s
)

Q1

Q2

Q3

Q4

Q5

Fig. 7. Response times for queries Q1–Q5 for fixed block sizes.

the memory, 1GB. Each query configuration ran 10 times, and the different con-
figurations were executed in a round robin fashion: there is no concurrency. The
complete set of experiments presented here lasted for 10 days approximately
around the clock, and as such, it reflects the condition of the network during
significantly different workloads. Consequently, the measurements presented
are characterized by a relatively high standard deviation due to the volatility
of the environment. To smooth the standard deviation, the lowest and the high-
est value of each set of the 10 runs is removed, and the average of the rest is
presented.

The response times of the 5 example queries are presented in Figure 7. The
fixed block sizes used to produce this profiling figure are 1K, 5K, 6K, 7K, 8K, 9K,
and 10K tuples. When the initial decision on the block size is clearly subopti-
mal, around 1000 tuples, an adaptive method can yield significant performance
benefits. At first sight, it seems that there is little scope for optimization oth-
erwise, since the near-optimum region is relatively wide. However, as will be
discussed next, even in these cases where the initial decision is not clearly sub-
optimal, adaptive policies can yield more robust and consistent performance
improvements that, in some cases, are around 10%.

On average, the optimum point for Q1 on the grounds of the profiling infor-
mation is at 7000 tuples, with an 8000-tuple block size being very close to it, as
shown in the figures. In reality, the actual optimum point is hard to detect as it
changes during the 10 runs: the optimum is 5000 tuples once, 7000 four times,
8000 three times, and 9000 twice. In the remainder of the text, the average

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:13

Table IV. The Adaptive Policies Evaluated

Name Policy b1 b2 df

NTN-noD NTN 400 - 0
NTN-D NTN 400 - 100
SEC-const-D SEC 400 - 100
SEC-5-noD SEC 400 5 0
SEC-10-noD SEC 400 10 0
SEC-15-noD SEC 400 15 0
SEC-20-noD SEC 400 20 0
SEC-25-noD SEC 400 25 0
SEC-5-D SEC 400 5 100
SEC-10-D SEC 400 10 100
SEC-15-D SEC 400 15 100
SEC-20-D SEC 400 20 100
SEC-25-D SEC 400 25 100

Table V. Comparison of Adaptive Policies

Name Q1 Q2 Q3 Q4 Q5 Avg

NTN-noD 1 1.1029 1.0269 1.0429 1.0912 1.0528

NTN-D 1.0047 1.0567 1.0053 1.0654 1.1127 1.0489

SEC-const-D 1.0215 1.1289 1.2465 1.0463 1.1785 1.1243

SEC-5-noD 1.0147 1.0613 1.036 1.0142 1.1549 1.0562

SEC-10-noD 1.03 1.0452 1.03 1.0322 1.1852 1.0645

SEC-15-noD 1.0366 1 1.0405 1.064 1.129 1.05

SEC-20-noD 1.0059 1.0724 1.0015 1.0182 1.0645 1.0325

SEC-25-noD 1.012 1.0486 1 1.0395 1 1.02

SEC-5-D 1.0249 1.1047 1.1277 1.0766 1.2189 1.1106

SEC-10-D 1.0214 1.0147 1.0893 1.0674 1.1614 1.0708

SEC-15-D 1.0102 1.0239 1.0987 1.0405 1.1528 1.0652

SEC-20-D 1.0103 1.0616 1.1413 1.1018 1.1288 1.0888

SEC-25-D 1.0042 1.0659 1.1748 1 1.1177 1.0725

optimum based on the profiling will be referred to as the optimum point. Note
that Q1 seems to be costlier than Q2 although it transfers lower volumes of data
across the network; this is explained by the different utilization of the server,
and the bandwidth of the connection during the runs of the two queries.

4.1.1 Comparison of Adaptive Techniques. Table IV presents the adaptive
policies evaluated. In the Newton (NTN) and the switching extremum control
(SEC) with adaptive gain, b1 is used in the first runs when no adequate infor-
mation has been gathered to estimate the derivative. The starting point in all
configurations is 5000 tuples, and the averaging window, n, of both x̄ and ȳ is
set to 3: the controller uses the average of the last three values of the block
sizes, and the measured output, respectively. Minimum and maximum value
constraints on the block size are imposed, set to 1000 and 10000, respectively.

The comparison of the techniques is shown in Table V, which presents the
normalized response times for each of the adaptivity configurations of Table IV.
The lowest response time for each query is given the value 1 in the table. The cell
values therefore correspond to the performance degradation when compared

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:14 • A. Gounaris et al.

against the most effective of the policies investigated. Several useful observa-
tions can be drawn from this table.

—First, taking into account the small differences among the response times
for different block sizes shown in Figure 7, the differences among the perfor-
mance of the different adaptivity policies are not negligible.

—Second, there is no policy that consistently outperforms the others.
—Third, as expected, the Newton-based techniques cannot perform as well as

the best switching extremum control policies; the former are known to be
more sensitive to noise.

—An additional observation is that, somewhat counter-intuitively, the effects
of the dithering signal, and adaptive gain based on the performance change
seem to annul each other, and consequently, the best approaches to SEC with
adaptive gain seem to be those that have zero dithering factor. On average,
SEC-25-noD yields 2% worse response times than the best policy (which is
not known a priori); whereas the best SEC policy with both adaptive gain and
dither signal yields 6.52% worse performance. An explanation could be that
the moving optimum point and the volatility of the environment are adequate
for continuously searching the block size space and thus to overcome local
optimum points; whereas dithering results in increased instability. Also, in
most cases the dither signal does not change the mean value of block size,
but causes a fluctuation on both sides of it with an amplitude that depends
on d f . When the dynamic adjustment operates near the starting point area,
negative dither signals cause more significant performance degradation than
the performance improvement in the case of positive signals because of the
shape of the response time graphs. Applying a dither signal therefore seems
more appropriate for cases in which the slope on both sides of the global and
local optimum points is steeper.

—Finally, the first flavor of the SEC policy with constant step, SEC-constant-
D, is not efficient. Perhaps, the performance would improve with different
values for b1, but this would shift the problem from fine-tuning the block size
to fine-tuning the adaptivity parameters.

4.1.2 Performance Improvements. Thus far we have discussed how the
adaptivity techniques compare to each other. In the following paragraphs the
comparison with the fixed block size cases will be discussed, with a summary
provided by Table VI. In this table, the values are normalized with the optimum
point of Figure 7 set to 1. The last row depicts the relative performance of the
most effective policy for each query, as shown in Table V. We can observe that:

—For this experiment set, the improvement may exceed 40% (if the fixed sized
blocks were 1000 tuples). Similar or much larger improvements may be no-
ticed in other settings (e.g., Section 4.1.4), in the generic case where the
near-optimum area of block sizes is previously unknown. In the following,
the more limited case where this area can be approximated is discussed.

—Dynamically adjusting the block size outperforms fixed size configurations
by more than 4% on average, even if these are known, for example, through

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:15

Table VI. Comparison of Dynamic Adjustment of Block Size Against Fixed
Size Policies

Block Size Q1 Q2 Q3 Q4 Q5 Avg

1000 1.25 1.281 1.4 1.45 1.43 1.361

5000 1.0718 1.0052 1.0752 1.0729 1.075 1.06

6000 1.0422 1.0286 1.0626 1.0198 1.024 1.0354

7000 1 1.018 1.0205 1.0104 1.0235 1.0145

8000 1.0013 1 1.0077 1.0698 1.0143 1.0186

9000 1.0134 1.005 1 1 1.0302 1.0097

10000 1.0241 1.0151 1.0084 1.0084 1 1.0112

dynamic 0.989 0.9945 0.9436 0.9764 0.8922 0.9591

profiling, and set to their optimum before execution. Also dynamic techniques
can track the optimal point; in fixed configurations, the optimum from a finite
set that has been profiled is chosen; however it might be the case that the
global optimal is not in this set.

—On average, the best size for a fixed size configuration in our experiments is
9000 tuples. This yields more than 5% performance degradation when com-
pared to dynamic adjustment, which may be translated into several minutes
in real time units (given that all queries and especially Q5 are rather expen-
sive and long-running, as shown in Figure 7).

—The starting block size of the adaptivity policies is 5000 tuples. If this size
was used for fixed size configurations instead of 9000, the performance im-
provement would be more than 10%.

—In the table, the performance of the best adaptivity policy is taken into ac-
count, for each query. If instead, SEC-25-noD is used for all queries, the
average performance improvement is around 3%, 8%, and 38% compared to
fixed blocks of 9000, 5000, and 1000 tuples, respectively; which is still signif-
icant. NTN-D yields 0.5%, 5.5%, and 36% lower response times, respectively.
NTN-noD, which requires not a single configuration parameter, behaves the
same as a 9000-tuple fixed block size.

The performance benefits may be further increased by modifying the averag-
ing window. We reran Q1 for two adaptivity policies, NTN-noD and SEC-25-D,
and changed the averaging window from 3 to 5. In both cases, a further de-
crease of response time by 2.3% was observed. Also, as discussed earlier, SEC
policies with adaptive step and dither signal do not perform as efficiently as
SEC policies with adaptive step but without dither signal. When rerunning Q1
for SEC-25-D and dithering factors 200 and 400, instead of 100, we noticed
negligible performance improvement in the first case, and performance degra-
dation in the latter. Consequently, it can be inferred with high confidence that
the value of df does not play a big role in approaches with dithering signal.

4.1.3 Speed of Convergence and Stability. The convergence speed of the
second flavor of the switching extremum control (SEC) techniques is fast: this
is depicted in Figure 8. On average, the adjustment converges to its final region
at 5 adaptivity cycles—five block transmissions. When there is no dither signal,
the block size remains stable thereafter. The drawback is that if either �yk−1 or

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:16 • A. Gounaris et al.

SEC-25

4500

5500

6500

7500

8500

9500

0 50 100

cycles

b
lo

c
k
 s

iz
e

 (
#

tu
p

le
s
)

Q5, no dither

Q5, dither

Q4, no dither

Q4, dither

Fig. 8. The block sizes at different adjustment cycles for Q4 and Q5 when SEC is employed with
b2 = 25.

SEC-const-D

4900

5400

5900

6400

6900

7400

7900

8400

8900

0 20 40 60 80 100 120

cycles

b
lo

c
k
 s

iz
e
 (

#
tu

p
le

s
)

Q1

Q5

Fig. 9. The block sizes at different adjustment cycles for Q1 and Q5 when SEC-const-D is employed.

�xk−1 remains unchanged for two consecutive averaging windows, then a chain
effect takes place where all future block sizes cannot be modified. This is not
desirable when the optimum point changes significantly during query runtime.
It is avoided with dithering, where there is a continuous search of the space,
which sometimes has negative effects as discussed earlier, but in some cases
enables higher accuracy as in Q4 (see Figure 8). The fast convergence property
does not hold for the first flavor of SEC, as shown in Figure 9. SEC-const-D
seems to require more cycles to converge than the complete length of the query
execution.

The fluctuation effect of, dither signal is more evident in approaches based
on Newton’s technique, and it may lead to instability. Figures 10 and 11 re-
fer to the average decisions of NTN techniques during query execution for Q1
and Q5. Without dithering, such approaches may not be as accurate as SEC
ones, but they are characterized by the same convergence speed. However, their

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:17

NTN

4900

5000

5100

5200

5300

5400

5500

5600

5700

0 5 10 15 20 25 30

cycles

b
lo

c
k
 s

iz
e
 (

#
tu

p
le

s
)

no dither

dither

Fig. 10. The block sizes at different adjustment cycles for Q1, when NTN is employed.

NTN

4900

5000

5100

5200

5300

5400

5500

5600

5700

0 50 100 150 200

cycles

b
lo

c
k
 s

iz
e
 (

#
tu

p
le

s
)

no dither

dither

Fig. 11. The block sizes at different adjustment cycles for Q5, when NTN is employed.

estimates may fluctuate, as in the last cycles of Figure 11. The amplitude of the
fluctuations, which are due to both the presence of a dither signal and the
sudden changes in NTN, can be mitigated by increasing the averaging window.

4.1.4 Dynamic Adjustment with Clearly Suboptimal Starting Point. In the
experiments presented previously, the initial starting point for the adaptive
techniques was relatively close to the optimum. To further prove the robustness
and efficiency of the adaptivity approaches, the five queries are executed again
(in a LAN setting this time) and the initial starting point is set to 1000 tuples. In
this setting, the performance degradation of such a suboptimal decision is more
severe than in a WAN environment (more than 100%). A single configuration of
the SEC techniques is picked, namely SEC-15-D, which is outperformed by SEC
approaches with adaptive gain and no dithering, but according to the previous
experiments, is more effective than the SEC approaches that apply dithering.
Table VII summarizes the results in normalized time units. The value of 1

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:18 • A. Gounaris et al.

Table VII. Comparison of the Performance of
Dynamic Adjustment of Block Size when the Initial

Block Size is Clearly Suboptimal

Dynamic Fixed at 1000 Tuples
Query Avg Stdev Avg Stdev
Q1 1.152 3.77% 2.581 0.42%
Q2 1.191 3.58% 2.557 0.18%
Q3 1.192 3.19% 2.404 1.08%
Q4 1.154 6.52% 2.178 0.41%
Q5 1.02 5.15% 2.06 0.77%

SEC-15-D

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

cycles

b
lo

c
k
 s

iz
e
 (

#
tu

p
le

s
)

Q1

Q5

Fig. 12. The block sizes at different adjustment cycles when SEC-15-D is employed and the starting
point is 1000 tuples.

corresponds to the lower response time after performing profiling with several
fixed sized configurations. When there is no adjustment, the response times
are more than 200% the optimum, whereas SEC-15-D yields on average only
14% worse response times. The intra-query behavior for Q1 and Q5 is shown
in Figure 12; the rest of the queries exhibit similar behavior. An observation is
that the adaptivity techniques very quickly move out of the clearly suboptimal
region of 5000 tuples or less. Overshooting is avoided due to the maximum hard
constraint imposed.

4.2 Simulation Results

The simulation setup is intended to provide a complementary study and ex-
perimentation with the proposed algorithms, so that a more representative
picture of the results can be obtained and more reliable conclusions can be
drawn. Empirical evaluation in real cases cannot always reveal some aspects
of the algorithms’s characteristics, since extensive experimentation with many
different parameter settings and algorithms requires a significant amount of
time. Using simulation, further remarks can be made and other issues can be
more clearly investigated.

On the basis of the profiles obtained by real evaluation experiments, as pre-
sented in Figure 7 and Table VI, we developed a simulation engine based on
MATLABTM. We implemented all adaptive policies proposed in Table IV and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:19

also experimented with many different parameter settings. Our experimenta-
tion revealed a number of additional issues, which allow a more detailed and
fairer comparison of the algorithms, and further reveal their features, advan-
tages, and disadvantages.

An important aspect of a faithful simulation in our case study is the ability
to emulate the unique characteristics present. Although the response times
exhibit an approximately concave shape on average, we have seen that the
impact of a number of unknown and unpredictable factors—variable network
conditions, server utilization level, transients after block size changes—induce
jitter, and hence noisy measurements and frequent movements of the optimal
point. These factors give rise to local peaks and non-monotonic behavior. These
issues have to be somehow emulated.

To this end, we incorporated into the simulation engine extra features for
modifying the profiles. Jitter, transients, and movements of the optimum point
can be injected into the initial profiles in order to test how they affect the per-
formance and whether they can be dealt with the proposed policies. Jitter and
transients may be emulated in the form of additional random noise uniformly
distributed around the static profile averaged values over all runs. Small move-
ments of the optimal point can easily occur due to the random noise added in
the profiles, which is assumed to be more or less representative of small devi-
ations in the measured values attributed to the volatility of the environment,
and are expected even under normal conditions.

We also wanted to cover the case of sudden changes of a more critical na-
ture that can be attributed to sudden non-trivial congestion occurrences, server
failure, or significant server performance degradation. Such critical events can
result in significant changes in the profile shape and level of values, for exam-
ple, an increase of the measured values for all block sizes, or a movement of the
optimal value to significantly lower or higher block size values. The simulation
engine can emulate these events so that the performance of the adaptive poli-
cies and their robustness can be studied. Deviations corresponding to 10–15%,
on average, of the static profile values for Q1 and Q3, are injected, and 3–5%
for Q2, Q4, Q5, which are proportional to their standard deviations (not shown
in Figure 7).

Nevertheless, even when the aforementioned issues are taken into account,
it should be noted that a simulation environment is certainly very different
from its real world counterpart, and it is natural to expect deviations in some
aspects of the results. It is impossible to simulate precisely the exact nature
and dynamics of the real systems. Moreover, in the simulation we are able to
replicate runs so that some characteristics are kept the same, and fair com-
parison of different policies can be made. This is not true in general in the real
world, where different runs may possess different (and perhaps not observable)
characteristics. Nonetheless, further useful observations can be made and im-
portant conclusions can be drawn.

4.2.1 Simulation 1—Tuning and Comparison Results. Prior to the evalu-
ation of the adaptive policies using simulation, the influence of the parameters
involved must be studied and an appropriate tuning of their values must be

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:20 • A. Gounaris et al.

0

1000

2000

3000

4000

5000

6000

7000

0

cycles

b
lo

c
k
 s

iz
e

SEC-const-D

SEC-25-noD

10080604020

Fig. 13. Comparison of the performance with the initial parameter values and a starting point of
1000 tuples.

conducted. This is typical in the implementation of any algorithm, and involves
a gain calibration procedure: selection of a good or optimal value so that the
performance objectives are met. This procedure presupposes good knowledge
of the algorithm’s environment. In our case we assume that there is profiling
information available, on the basis of real data acquired by prior experimenta-
tion. However, the volatility of the environment requires the use of algorithms
that are robust in that sense: they are not based on proper or continuous tuning
of their parameters to perform well.

While the Newnton-based algorithms do not require any tuning, the constant
gain and adaptive gain policies are based on choosing the b1, b2 parameters.
Moreover, if a dithering signal is employed, a value for df must be chosen as
well.

Our initial runs with the values b1 = 400, b2 = 5, 10, 15, 20, 25, df = 100,
as they appear in Table IV, revealed some results similar to the ones described
in Section 4.1, as well as some different observations. The performance of most
policies is heavily influenced by the choice of the starting block size. When
this is selected as BS = 5000 tuples, in a position lying in the wide near-
optimal region of our profiles, similar results to Section 4.1 are obtained. On
the contrary, when a clearly nonoptimal initial value of BS = 1000 tuples is
used, significantly different results are obtained. More specifically, the Newton-
based and the adaptive gain policies show the same transient behavior but a
poor steady-state performance, and they are stuck far from the near-optimal
region. On the contrary, the constant gain policies are robust in reaching the
optimum, but with a retarded and more oscillatory transient and steady-state
response. These aspects are depicted in Figure 13.

We continued with further experiments for appropriate tuning of the param-
eters involved. The tuning procedure and the results found are described in the
following. In these runs, the Query 1 profiled data are selected.

—The performance of the constant gain policies when tuning the gain b1 to take
the values 400, 800, 1200 is depicted in Figure 14. The robustness to jitter and

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:21

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40

cycles

b
lo

c
k
 s

iz
e

SEC-const-D 400

SEC-const-D 800

SEC-const-D 1200

Fig. 14. The performance of constant gain policies with b1 = 400, 800, 1200 for a starting point of
1000 tuples.

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

cycles

b
lo

c
k
 s

iz
e

SEC-25-D

SEC-100-D

SEC-150-D

SEC-250-D

Fig. 15. The performance of adaptive gain policies with b2 = 25, 100, 150, 250 for a starting point
of 1000 tuples.

local peaks is good; the performance and the speed of convergence improve
as the gain is increased, at the expense of larger amplitude of oscillations
at steady state. The gain value can be selected so that a tradeoff between
speed of convergence and overshooting is achieved. However, this technique
is robust enough to yield good performance even for low and not properly
tuned constant gain values.

—The influence of the gain b2 on the performance of the adaptive gain policies
is shown in Figure 15. We observe significant changes in its response when
the gain is increased from 25 to 250. However, the results are not consistent
and robust; they are sensitive to jitter and local peaks (see Figure 16 where
the results of two different runs are shown), and when convergence close to
the real optimal is achieved, the high gain may induce high overshooting. We

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:22 • A. Gounaris et al.

0

2000

4000

6000

8000

10000

12000

0 20 40 60

cycles

b
lo

c
k
 s

iz
e

SEC-250-noD

2000 - run 1

SEC-250-noD

2000 - run 2

Fig. 16. The performance of the SEC-250-noD policy with B = 2000 and a starting point of
1000 tuples—two different runs are shown.

0

2000

4000

6000

8000

10000

12000

0 10 20

cycles

b
lo

c
k
 s

iz
e
s

SEC-250-D

5000
SEC-250-D

2000
SEC-250-D

1000

Fig. 17. The performance of the SEC-250-D policy with B = 5000, 2000, 1000, a starting point of
1000 tuples and dither df = 10.

experimented with a simple tuning procedure. First, the gain b2 is increased
up to a value in which tracking of the optimum in steady-state is possible in
most cases. Second, the oscillations and hard-limit impacts are suppressed by
imposing a rate limiter: an upper bound value B such that �y = yk − yk−1 ≤
B. With b2 = 250 and B = 5000, 2000, 1000 we obtain the improved responses
shown in Figure 17, where the influence of the rate limiter bound may also
be seen.

—The Newton-based policies cannot be influenced by the choice of a gain, and
further experimentation suggested that they are inappropriate in dealing
with our profiles and their discontinuous and noisy characteristics. Hence,
they are not studied in the sequel.

—The role of dither and its magnitude has also been studied. For the con-
stant gain policies the effect of dither and its magnitude is not significant.
Those policies do not require the use of dither to remain excited (in order to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:23

continuously search the block size space thus avoiding stagnancy). However,
the dither d f = 100 used so far usually helps. For the adaptive gain poli-
cies, it has been observed that in the absence of dither, the combined effects
of averaging and convergence lead to stagnancy. A large amount of dither
is misleading and induces oscillations, while a small amount of dither can
be useful. We decided to use a much smaller amount of dither compared to
the initial experiments to ensure excitation and tracking ability. In fact, the
results in Figures 14,15, and 17 are obtained with df = 10.

—Changing the averaging horizon from n = 3 to n = 5 seems to result in a
small improvement for the constant gain policies. We observed oscillation
suppression without robustness reduction. Unfortunately, larger averaging
horizons result in performance degradation for adaptive gain policies, mainly
because of their fragile robustness to the volatility of the environment.

—Constant and adaptive gain policies exhibit similar performance for differ-
ent values of the tuning parameters. Nevertheless, adaptive gain policies are
worse than constant gain ones in terms of consistency and robustness, which
can be quantified as 4–5 times larger standard deviations. As shown in Figure
16, the large deviations of the adaptive gain policies are translated in the fre-
quent occurrence of runs that fail to overcome the profile obstacles and remain
far from the near-optimal region, thus yielding fairly degraded performance.

4.2.2 Simulation 2—Tracking Ability. To test the tracking ability of our
adaptive policies to changes in the optimal point we decided to inject synthetic
changes into the simulation. We use Query 1 with an increased number of tuples
(from 150000 to 450000). The changes introduced are as follows:

—At step (cycle) k = 100 the near-optimal region of the profile (excluding the
nonoptimal initial region of 1000-5000 tuples which remains constant) for
Query 1 is shifted to the right by 1000 tuples: the optimal point moves from
7000-8000 tuples to 8000-9000 tuples.

—At step k = 150 the profile is scaled by 1.25: the optimal point remains at
8000-9000 tuples, and all response times are multiplied by 1.25.

—At step k = 200 the profile is shifted to the right by 2000 tuples: the optimal
point moves to 10000 tuples.

—At step k = 250 the profile is scaled by 0.75: all response times are multiplied
by 0.75.

—At step k = 300 the profile is shifted cyclically to the right by 2000 tuples:
the optimal point moves to 6000-7000 tuples.

—Finally, at step k = 400 the profile is shifted to the right by 2000 tuples: the
optimal point moves to 8000-9000 tuples.

Figure 18 reveals the good and bad characteristics of the adaptive gain
schemes. Low overshooting and fast response are on the good side. On the
bad side, some runs may be characterized by poor and slow tracking and poor
robustness properties. As before, they cannot track changes consistently and
they often fail to detect changes made. Dither can only partially help, but it
does not resolve the problem.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:24 • A. Gounaris et al.

SEC-250-D 2000

0

2000

4000

6000

8000

10000

12000

cycles

b
lo

c
k
 s

iz
e

 Run 1

 Run 2

Fig. 18. The performance of the SEC-250-D policy with B = 2000, df = 10—tracking ability with
two runs.

SEC-const-D 400

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500

cycles

b
lo

c
k
 s

iz
e

Fig. 19. The performance of the SEC-const-D policy with b1 = 400, df = 10—tracking ability.

Figure 19 shows that the constant gain schemes are capable of tracking well
the changes made. Larger values for the gain, b1, allow quicker response but
also allow oscillations of larger amplitude.

4.2.3 Simulation 3—Modified Profiles. To get a better understanding of
the influence of several factors on the performance of our algorithms we con-
tinued our experimentation with modified profiles. In the previous simulations
we used static profiles based upon the average values obtained over all runs
for each query, corrupted by additional noise. In this simulation we employ the
following modifications:

(1) First, instead of using average value profiles, we experiment with profiles
corresponding to individual runs, with or without additional noise.

(2) Second, smooth versions of the initial nonsmooth profiles are produced by
fitting a quadratic model to the data.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:25

We did not observe any difference by replacing the average values profiles
with the individual runs profiles, with or without additional noise. As a mat-
ter of fact, it is not difficult to see that, besides their different numerical val-
ues and optimal point location, they share the same characteristics: discon-
tinuities, local peaks (non-concavities), volatility, and so on. All observations
regarding the advantages and disadvantages of the two sides (constant and
adaptive gain policies) made previously, continue to hold, and this provides
further justification for the analysis and the remarks made in the previous
sections.

However, when experimenting with smooth versions of any of the discontin-
uous profiles (either corresponding to individual runs or average values) we
observed different characteristics. In this case, the adaptive gain policies out-
perform the constant gain policies, since the oscillations in steady state quickly
die out and the transient performance is faster. Repeated simulations have also
assured us that the adaptive gain policies have good robustness properties. This
is attributed to the absence of discontinuities in the profiles.

4.2.4 Discussion. Parameter tuning in an attempt to yield improved re-
sults for specific applications is common in algorithmic development. When the
environment is predictable, time invariant, and can be modelled precisely it is a
fair thing to do. For our case study and the aforementioned challenges, we would
rather prefer a general purpose adaptive technique characterized mainly by ro-
bustness and general applicability, while being able to yield acceptable results
without requiring fine and cumbersome tuning.

Our simulation results suggest that constant gain policies possess these de-
sirable characteristics to a high degree regardless of the initial block size; they
can perform well even without proper tuning (when required, tuning can be
done with a single parameter in a straightforward manner), although their
transient behavior and steady state stability deviate from the optimal. Their
robustness to nonsmooth profiles is good and they have good tracking ability
for significant profile changes.

On the other hand, when the initial block size is out of the near-optimal
region, adaptive gain policies have nice transient and stability properties but
they are quite sensitive to noise and nonsmooth profile shapes. They require
finer and more time-consuming tuning of more than one parameter to perform
acceptably, and they still cannot reach good robustness properties or reliable
tracking ability. We attribute this to the nonsmoothness of the profiles which, in
the absence of a model capturing clear shape trends, or even the absence of such
definite trends, results in poor approximations of the real derivatives by finite
differences, leading to stagnancy and failure of the corresponding algorithms.
However, further simulations with smooth profiles showed that in this case they
are characterized by superior performance, and good robustness properties and
tracking ability.

Although the simulation results in Section 4.2 were demonstrated using
data from Query 1, all relevant observations and remarks have been validated
for the rest of the queries, as well. Before concluding this section, a further
note deserves special mention: how the simulation results compare with the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:26 • A. Gounaris et al.

results of the empirical evaluation. It is true that some of the problematic issues
identified in the simulation runs were not observed in real experiments, and
conversely policies and heuristics thought to be less appropriate in empirical
evaluation were found robust and attractive in the simulations. Our remarks
are summarized as follows:

—Empirical evaluation showed the adaptive gain policies to be efficient than
constant gain policies, which were found more reliable in terms of robust-
ness (in the sense that they are not based on proper or continuous tuning of
their parameters to perform well) and tracking ability by simulation experi-
mentation. When the initial block size is within or close to the near-optimal
region, the empirical and simulation results are essentially in agreement.
In other cases, although empirical evaluation shows that adaptive gain poli-
cies are robust as well (Section 4.1.4), this observation cannot be verified by
simulations. Possible explanations follow.

—The simulations were performed with volatile and discontinuous averaged
data profiles corrupted by noise, whereas real profiles are expected to be
slightly smoother. This proved to be the main reason for the incompe-
tence of schemes relying on derivative calculations (Newton policies), or
the poor robustness and tracking properties of the adaptive gain policies
in some cases. Careful tuning of the adaptive gains cannot resolve this
problem.

—In real cases, such as those dealt with in Section 4.1, the degraded perfor-
mance of the constant gain schemes should be attributed to the constantly
changing environment they create. As implied by the data in Tables I and II,
frequent and significant block size changes give rise to transients—perhaps
by exciting unknown and unobservable system dynamics, governed by in-
ternal server behavior—which are difficult to simulate and cannot be easily
handled by an optimization algorithm, unless we ensure that they have died
out, for example, by slow sampling. This is not the case in our implemen-
tation, and we expect all policies to suffer from this phenomenon. During
the transient phase of their response, all policies generate large steps, which
does not prevent them from reaching the near-optimal region quickly. Unfor-
tunately, the phenomenon’s influence plays a crucial role during the steady
state phase, around the optimal point. The adaptive gain policies are influ-
enced to only a small extent since they converge quickly and maintain an
almost constant value since their gains become very small; whereas the con-
stant gain policies can be heavily influenced because they attain the same
large gains, and therefore sustained oscillations, of a large amplitude. Sim-
ilarly, the use of a large dither signal can further excite these dynamics and
transients.

—In either case we experimented with different parameter values, and re-
sponses with similar characteristics have been specified for most policies.
The fact that for a reasonably good performance (that is, convergence abil-
ity to the optimum point), gains of different order of magnitude have been
found, should not be considered as problematic, since the results can be
reasonably matched by simple scaling.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:27

It becomes obvious that it is fruitful to combine empirical evaluation and
simulation to determine the applicability and efficiency of the proposed tech-
niques for our problem. Furthermore, it paves the way for potential future
improvements; the key issues that need to be tackled have been identified.

5. DISCUSSION OF RELATED WORK AND POINTERS
TO FUTURE RESEARCH

There is a recent boom in applying control theory in computing systems, soft-
ware engineering, and software services [Hellerstein et al. 2005; Abdelzaher
et al. 2003]. This is due to the trend of going beyond ad hoc and heuris-
tic techniques towards an autonomic computing paradigm [Diao et al. 2005].
Exploitation of the rich arsenal of techniques, methods, ideas, and foundations
of control theory, developed for many decades since the second world war, has
already led to improved designs in many areas and problems [Abdelzaher et al.
2002; Gandhi et al. 2002; Lu et al. 2005].

Furthermore, for preserving QoS, optimization approaches have been devel-
oped in many works, where dynamic tuning of several configuration parameters
related to the performance of computing systems is suggested. More specifically,
online minimization of the response time of an Apache Web server by dynamic
tuning of the number of maximum clients allowed to be simultaneously con-
nected is described in Liu et al. [2003b], where hill climbing and fuzzy control
techniques are employed. For a database server, online adjustment of multiple
configuration parameters using online random and direct search techniques is
proposed in Diao et al. [2003] to guarantee good performance. For application
servers, optimal configurations have also been sought in Raghavachari et al.
[2003] using off-line experimentation and statistical analysis.

Other recent works where optimization problems are dealt with are the ef-
forts described in Stanojevic et al. [2006] and Stanojevic and Shorten [2007].
The problem there is the optimal choice of the buffer size in the Internet routers,
so that minimum queueing delays and maximum utilization (or any desired
trade-off) is achieved. Adaptive online tuning of the buffer size is suggested, and
iterative MIMD (multiplicative increase-multiplicative decrease) algorithms
are proposed. Such schemes, including the AIAD (additive increase-additive
decrease) and AIMD choices, are used in networking and congestion control
problems, and are inherently linear. They are not suitable for our case study,
since they do not converge, but rather continuously search for the optimum.
They usually respond slowly, due to their small step sizes. Larger steps can
speed up the transient behavior at the expense of undesirable large oscillations
appearing during the steady-state. This behavior is problematic in our case
study, as our experimentation with constant gain switching extremum control
schemes has shown.

Extremum control has been employed from the early stages of control the-
ory [Draper and Li 1954; Blackman 1962], but is still a subject under devel-
opment [Ariyur and Krstic 2003; Killingsworth and Krstic 2006; Choi et al.
2002; Krstic and Wang 2000]. A review of related techniques can be found
in Larsson [2001]. There are two basic families: gradient, and parametric

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:28 • A. Gounaris et al.

extremum control methods. Gradient methods usually appear in two flavors,
switching and perturbation extremum control techniques. Gradient methods
are based upon model-free gradient approximate computations, whereas para-
metric methods rely on parametric models and online parameter identification.
The former are lighter and more related to hill climbing and gradient descent
optimization schemes, while the latter employ self-tuning and adaptive control
and are more complicated and computationally demanding.

Although applied in many engineering systems, to the author’s knowledge
this work is the first application to the Web Service Management System
(WSMS) problems described in our context. For nonengineering problems, in
a totally different context, an extremum control approach has only recently
appeared in Flardh et al. [2005] for the problem of error correction in packet-
switched networks. Feedback and feedforward control techniques based upon
prediction are employed. In the absence of any additional information, switch-
ing extremum control is suggested, facilitated with filtering and averaging to
deal with the noisy and frequently changing measurement data.

It is obvious that many other techniques from the fields of numerical opti-
mization and extremum control could be used. As a subject for future work,
we should perhaps focus on our profiless’ shapes, and observe that, despite the
volatility, local peaks, jitter and so forth, there is a very clear overall picture,
which can be represented by a smooth quadratic (or sometimes monotonically
decreasing) concave curve. The experiments in Simulation 3 suggest one possi-
bility for further improvement. If we manage to fit our data to develop smooth
profiles (e.g., by constructing models with parameter identification) without
sacrificing good robustness and generalization properties, the adaptive gain
policies could achieve improved performance. This has to be done in a computa-
tionally tractable manner, while allowing early detection and fast response to
changes. Furthermore, hybrid schemes combining adaptive and constant gain
policies, could also lead to improved results. In this case, simple mechanisms
for accurate and reliable detection of the different response phases have to be
developed. It is a subject of future work to experiment with new schemes and
test their applicability in special cases, including concurrent requests.

6. CONCLUSIONS

This article describes algorithms for the online adjustment of block size for en-
hanced transmission of large data volumes in Web Service Grids following a
control theoretical approach. The algorithms analyze the behavior of past val-
ues for the block size in order to determine the future configurations. The algo-
rithms fall into two broad areas: runtime optimization inspired by hill-climbing
techniques, and switching extremum control. As expected the former category
is outperformed by the latter, which is more suitable for systems exhibiting
noisy, nonmonotonical behavior. For the latter category, we distinguish between
techniques employing constant gain and those employing adaptive gains. The
trade-offs between these two types can be summarized as follows. Adaptive gain
policies seem to be the more suitable choice when the near optimal region can be
approximated. However, in this case the performance benefits may not exceed

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

A Control Approach to Self-Optimizing Block Transfer in Web Service Grids • 6:29

a 10% decrease in response times. Larger improvements, over 100% decrease
in performance degradation caused by suboptimal choice of block sizes, can oc-
cur when this region is a priori unknown. In this case, adaptive gain policies
have nice transient and stability properties but are still quite sensitive to noise
and nonsmooth profile shapes. On the other hand, constant gain policies can
perform well even without fine tuning, but their transient behavior and steady
state stability may deviate from the optimum.

In summary, the results of this work render the process of calling services
self-optimizing, and detailed WS profiling and fine tuning, obsolete. Detailed
experiments in a real environment, complemented by simulations that can in-
vestigate additional configurations, demonstrate the efficiency and the effec-
tiveness of the presented solutions and prove that these are capable of signif-
icantly reducing the response time (especially in the case where the optimum
region of block sizes can not be a priori approximated), and can be character-
ized by all four main desired properties for self-managing systems: stability,
accuracy, speed of convergence, and overshoot avoidance [Diao et al. 2005]. The
techniques presented are applicable to any similar optimization problem where
the entity to be configured exhibits remotely non-monotonic, concave behavior;
OGSA-DAI services are presented merely as a case study.

REFERENCES

ABDELZAHER, T. F., SHIN, K. G., AND BHATTI, N. T. 2002. Performance guarantees for Web server
end-systems: A control-theoretical approach. IEEE Trans. Parallel Distrib. Systems 13, 1, 80–96.

ABDELZAHER, T. F., STANKOVIC, A., LU, C., ZHANG, R., AND LU, Y. 2003. Feedback performance control
in software services. IEEE Cont. Sys. Mag. 23, 3.

ALPDEMIR, M. N., MUKHERJEE, A., PATON, N. W., WATSON, P., FERNANDES, A. A. A., GOUNARIS, A., AND

SMITH, J. 2003. Service-based distributed querying on the grid. In Proceedings of the 1st Inter-
national Conference on Service Oriented Computing (ICSOC). Springer, 467–482.

ALPDEMIR, N., GOUNARIS, A., MUKHERJEE, A., FITZGERALD, D., PATON, N. W., WATSON, P., SAKELLARIOU, R.,
FERNANDES, A. A., AND SMITH, J. 2005. Experience on performance evaluation with OGSA-DQP.
In Proceedings of the UK e-Science All Hands Meeting.

ANTONIOLETTI, M., ATKINSON, M. P., BAXTER, R., BORELY, A., CHUE HONG, N. P., COLLINS, B., HARDMAN,
N., HUNE, A., KNOX, A., JACKSON, M., KRAUSE, A., LAWS, S., MAGOWAN, J., PATON, N. W., PEARSON,
D., SUGDEN, T., WATSON, P., AND WESTHEAD, M. 2005. The design and implementation of grid
database services in OGSA-DAI. Concurrency—Practice and Experience 17, 2-4, 357–376.

ARIYUR, K. AND KRSTIC, M. 2003. Real-Time Optimization by Extremum-Seeking Control. John
Wiley & Sons.

BLACKMAN, P. 1962. Extremum-Seeking Regulators : An Exposition of Adaptive Control. Pergamon
Press.

CHOI, J., KRSTIC, M., ARIYUR, K., AND LEE, J. 2002. Extremum seeking control for discrete-time
systems. IEEE Trans. Auto. Cont. 47, 2, 318–323.

DIAO, Y., ESKESEN, F., FOREHLICH, S., HELLERSTEIN, J., SPAINHOWER, L., AND SURENDRA, M. 2003.
Generic online optimization of multiple configuration parameters with application to a database
server. DSOM, 3–15. LNCS 2867.

DIAO, Y., HELLERSTEIN, J. L., PAREKH, S. S., GRIFFITH, R., KAISER, G. E., AND PHUNG, D. B. 2005. Self-
managing systems: A control theory foundation. In Proceedings of IEEE International Conference
and Workshop on the Engineering of Computer Based Systems (ECBS 2005). 441–448.

DOBRZELECKI, B., ANTONIOLETTI, M., SCHOPF, J., HUME, A., ATKINSON, M., HONG, N. C., JACKSON, M.,
KARASAVVAS, K., KRAUSE, A., PARSONS, M., SUGDEN, T., AND THEOCHAROPOULOS, E. 2006. Profiling
OGSA-DAI Performance for Common Use Patterns. In Proceedings of the UK e-Science All Hands
Meeting.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

6:30 • A. Gounaris et al.

DRAPER, C. AND LI, Y. T. 1954. Principles of Optimizing Control Systems. ASME Publications.
FLARDH, O., JOHANSSON, K. J., AND JOHANSSON, M. 2005. A new feedback control mechanism for

error correction in packet-switched networks. In Proceedings of the 44th IEEE Conference on
Decision and Control (CDC-ECC’05), 488–493.

GANDHI, N., HELLERSTEIN, J., TILBURY, D., AND JAYRAM, T. 2002. Using control theory to achieve
service level objectives in performance management. Real-Time Sys. 23, 127–141.

GOUNARIS, A., SAKELLARIOU, R., PATON, N. W., AND FERNANDES, A. A. A. 2006. A novel approach
to resource scheduling for parallel query processing on computational grids. Distrib. Para.
Databases 19, 2-3, 87–106.

GOUNARIS, A., SMITH, J., PATON, N. W., SAKELLARIOU, R., FERNANDES, A. A. A., AND WATSON, P. 2005.
Adapting to changing resource performance in grid query processing. In Data Management in
Grids, First VLDB Workshop (DMG 2005). 30–44.

GOUNARIS, A., YFOULIS, C., SAKELLARIOU, R., AND DIKAIAKOS, M. D. 2007. Self-optimizing block trans-
fer in Web service grids. In Proceedings of the 9th Annual ACM International Workshop on Web
Information and Data management (WIDM’07). ACM, 49–56.

HELLERSTEIN, J., DIAO, Y., PAREKH, S., AND TILBURY, D. 2005. Control engineering for computing
systems. IEEE Cont. Syst. Mag. 25, 6, 56–68.

KILLINGSWORTH, N. AND KRSTIC, M. 2006. PID tuning using extremum seeking. IEEE Cont. Syst.
Mag., (Feb.), 70–79.

KOSAR, T. AND LIVNY, M. 2004. Stork: Making data placement a first class citizen in the grid. In
24th International Conference on Distributed Computing Systems (ICDCS 2004), 24-26 (Mar.),
Hachioji, Tokyo, Japan. IEEE Computer Society, 342–349.

KRSTIC, M. AND WANG, H. 2000. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica 36, 595–601.

LARSSON, S. 2001. Literature study on extremum control. Tech. rep., Chalmers University of
Technology.

LIU, D. T., FRANKLIN, M. J., AND PAREKH, D. 2003a. Griddb: A database interface to the grid. In
Proceedings of the 2003 ACM SIGMOD International Conference of the Management of Data,
A. Y. Halevy, Z. G. Ives, and A. Doan, Eds. ACM, 660.

LIU, X., SHA, L., DIAO, Y., FROEHLICH, S., HELLERSTEIN, J. L., AND PAREKH, S. S. 2003b. Online response
time optimization of Apache Web server. In Proceedings of the 11th International Workshop on
Quality of Service (IWQoS). 461–478.

LU, C., WANG, X., AND KOUTSOUKOS, X. D. 2005. Feedback utilization control in distributed real-
time systems with end-to-end tasks. IEEE Trans. Para. Distrib. Sys. 16, 6, 550–561.

NARAYANAN, S., CATALYREK, U. V., KURC, T. M., ZHANG, X., AND SALTZ, J. H. 2003. Applying database
support for large scale data driven science in distributed environemnts. In Proceedings of the 4th
Workshop on Grid Computing (GRID’03).

PERSINNI, A. 1988. The Mathematics of Nonlinear Programming. Springer-Verlag.
RAGHAVACHARI, Y., REIMER, D., AND JOHNSON, R. 2003. The deployer’s problem: Configuring applica-

tion servers for performance and reliability. In Proceedings of the 25th International Conference
on Software Engineering (ISCE2003). 484–489.

SESHASAYEE, B., SCHWAN, K., AND WIDENER, P. 2004. Soap-binQ: High-performance soap with con-
tinuous quality management. In Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS). 158–165.

SRIVASTAVA, U., MUNAGALA, K., WIDOM, J., AND MOTWANI, R. 2006. Query optimization over Web
services. In Proceedings of the 32nd International Conference on Very Large Databases (VLDB).
355–366.

STANOJEVIC, R., KELLET, C., AND SHORTEN, R. N. 2006. Adaptive tuning of drop-tail buffers for
reducing queueing delays. IEEE Comm. Letters 10, 7.

STANOJEVIC, R. AND SHORTEN, R. 2007. How expensive is link utilization. Tech. Rep., available at
http://www.hamilton.ie./person/rade/QP.pdf.

WELLSTEAD, P. AND ZARROP, M. B. 1995. Self tuning systems: control and signal processing. John
Wiley & Sons.

Received June 2007; revised February 2008; accepted February 2008

ACM Transactions on Autonomous and Adaptive Systems, Vol. 3, No. 2, Article 6, Publication date: May 2008.

