European Research MNetwork on Foundations, Software Infrastructures and Applications

for large scale distributed, GRID and Peer-to-Peer Technologies

Compar ative Evaluation of the Robustness of DAG Scheduling
Heuristics

Louis-Claude Canon, Emmanuel Jeannot
{lI oui s-cl aude. canon, enmanuel . j eannot }@ori a.fr
LORIA, INRIA, Nancy University, CNRS
Campus Scientifique — BP 239
54506 Vandoeuvre-lés-Nancy Cedex, France

Rizos Sakellariou, Wei Zheng
{ri zos, zheng}@s. man. ac. uk
School of Computer Science
The University of Manchester
Oxford Road, Manchester M13 9PL, U.K.

. CoreGRID Technical Report
(oreGRAMB—_ Number TR-0120

—— December 5, 2007

Institute on Resource Management and Scheduling

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

Comparative Evaluation of the Robustness of DAG Scheduling
Heuristics

Louis-Claude Canon, Emmanuel Jeannot
{l'oui s-cl aude. canon, enmanuel . j eannot }@oria.fr
LORIA, INRIA, Nancy University, CNRS
Campus Scientifique — BP 239
54506 Vandoeuvre-lés-Nancy Cedex, France

Rizos Sakellariou, Wei Zheng
{ri zos, zheng}@s. man. ac. uk
School of Computer Science
The University of Manchester
Oxford Road, Manchester M13 9PL, U.K.

CoreGRID TR-0120
December 5, 2007

Abstract

In this paper we analyze the robustness of 20 static, makespan-centric, DAG scheduling heuristics of the literature.
We also study if dynamically changing the order of the tasks on their assigned processor improves the robustness.
Based on experimental results we investigate how robustness and makespan are correlated. Finally, the heuristics are
experimentally evaluated and ranked according to their performance in both robustness and makespan.

1 Introduction

With the emergence of distributed heterogeneous systems, such as grids, and the demand to run complex applications
such as workflows, the problem of choosing robust schedules becomes more and more important. Indeed, in such
environments, a carefully crafted schedule based on deterministic, statically-known, estimates for the execution time
of the different tasks that compose a given application, may prove to be grossly inefficient, as a result of various
unpredictable situations that may occur at run-time. Still, the existence of a good schedule is an important factor
affecting the overall performance of an application. Thus, to mitigate the impact of uncertainties, it is necessary to
choose a schedule that guarantees robustness, that is, a schedule that is affected as little as possible by various run-time
changes.

There are several ways to achieve robustness. A first approach is to overestimate the execution time of individual
tasks. This results in a waste of resources as it induces a lot of idle time during the execution, if the task duration is
much shorter than the estimation. Another solution is to reschedule tasks dynamically allocating them to an idle proces-
sor in order to take into account information that has been made available during the execution. However, rescheduling
a task is costly as it implies some extra communication costs and synchronization. Relevant studies [20] indicate that,
in addition to rescheduling, it is important to have a static schedule with good properties before the start of the execu-
tion. Therefore, even if a dynamic strategy is used, a good initial placement would reduce the possibility of making a
(later to be proved) bad decision and, hence, would reduce the extra costs of resorting to a dynamic strategy.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract | ST-2002-
004265).

A significant amount of work in the literature has focused on proposing static directed acyclic graph (DAG)
scheduling heuristics that minimize the overall application execution time (known as the makespan). However, to
the best of our knowledge, no study so far has tried to evaluate these heuristics with respect to the robustness of the
schedule they produce. In this paper, we assess the robustness of twenty DAG scheduling heuristics from the literature
designed to minimize the makespan.

In the remainder of this paper, Section 2 reviews related work on robustness and provides the definition used in
this paper. Section 3 presents the model used to assess heuristics in terms of robustness. Section 4 describes the
methodology of the experiments, Section 5 presents the experimental results and Section 6 concludes the paper.

2 Related work

The literature is abundant of makespan-centric static DAG scheduling heuristics. For our evaluation, we chose 20 of
these heuristics, which include some of the most widely used and cited. Due to lack of space, we refer the reader to
the relevant publications for the description of the heuristics. The 20 heuristics, in alphabetical order, are: BIL [17],
CPOP [4], DPS [1], Duplex [9], FCP [18], FLB [18], GDL [23], HBMCT [19], HCPT [13], HEFT [24], k-DLA [25],
LMT [14], MaxMin [9], MCT [9], MET [9], MinMin [7], MSBC [11], OLB [9], PCT [16], WBA [7].

Some work in the literature has attempted to define and model robustness; no widely accepted metric exists. In [2],
the authors propose a general method to define a metric for robustness. First, a performance metric is chosen (this is
the metric that needs to be robust). In our case, this performance metric is the makespan as we want the execution time
of an application to be as stable as possible. Second, one has to identify the parameters that make the performance
metric uncertain. In our case, it is the individual duration of the tasks and communications. Third, one needs to find
how a modification of these parameters changes the value of the performance metric. In our case, the answer is fairly
simple, as an increase of the task or communication duration generally implies an increase of the execution time (even
though, in some cases, a task may have a longer duration than expected and due to the structure of the schedule, such
modification may not impact the overall makespan). Lastly, one has to identify the smallest variation of a parameter
that makes the performance metric exceed an acceptable bound. A schedule A is said to be more robust than a schedule
B if this variation is larger for A than for B. However, estimating this variation is the most difficult part as it requires
to analyze deeply the structure of the problem and its inputs.

In order to simplify this framework, research in the context of evaluating the robustness of the makespan has
proposed several other metrics, such as: the slack [8, 22, 20]; the probability that an execution exceed some expected
bounds [21] (called the probabilistic metric); measures based on the Kolmogorov-Smirnov (KS) distance between
the cumulative distribution (CDF) of the performance metric under normal operating conditions and the CDF of the
same performance metric when perturbation applies [12]; or the differential entropy of the makespan [8]. In [10],
we have studied the differences between these metrics and have concluded that the makespan standard deviation, the
probabilistic metric and the differential entropy are highly correlated. This correlation was possibly due to the quasi-
normality of the makespan distribution. Intuitively, the standard deviation of the makespan distribution indicates how
narrow this distribution is. The narrower the distribution, the smaller the standard deviation is. This metric is related
to the robustness because when two schedules are given the one for which the standard deviation is smallest is the
one for which actual executions are more likely to have a makespan close to the average value. Mathematically, over
several different values of the makespan, the standard deviation is given by oy = \/avg(M?2) — avg(M)2, where
avg(M) is the average value of all makespan values available. The standard deviation will be used as a metric to
assess robustness in this paper.

3 A Stochastic Model to Assess Robustness

We are given an application that is modeled by a stochastic task graph. This graph is a DAG, where vertices represent
computational tasks and edges represent task dependencies (often due to communication). To model the uncertainty,
task and communication cost are given by a random variable that follows a specific law (which can be different for all
the tasks and communications). Hence, for each execution of the graph these costs may be different.

The task graph is executed on a set of heterogeneous resources. We assume that the topology of this infrastructure is
complete (every machine can communicate to every one). We use the related model [15] concerning CPU capabilities:
each CPU i is given a value 7, the time to execute one instruction. This means that if the cost of a task drawn from its

CoreGRID TR-0120 2

random variable is ¢ the execution time of this task on processor i is ¢;. Concerning communication, we model each
link by its latency («) and its bandwidth (). The time to send m bytes on link 4 is then a. + 5 x m.

As we use static makespan-centric scheduling heuristics to map tasks onto the processors, we need to adapt the
model to compute the schedule. We also need to compute the distribution of the makespan to determine its mean
(average makespan) and its standard deviation (robustness).

To solve the above issues, we have proceeded as follows. Given a stochastic task graph, we transform it to a
deterministic task graph by using only the mean value of the communication and task duration. With this deterministic
task graph, we compute a schedule using one of our 20 heuristics. To compute the distribution of the makespan, we
simulate, a large number of times, the execution of the schedule on the (heterogeneous) resources. This is a Monte-
Carlo (MC) method, which means that each time a value for the duration of a task or communication is needed,
this value is generated using the random variable that described it in the stochastic task graph. This allows us to
compute the empirical distribution function (EDF), which converges to the true law of the makespan as the number
of simulations increases, as stated by the Glivenko-Cantelli theorem. The precision achievable with a given number
of MC simulations is given by the confidence intervals of the calculated approximations of the makespan mean and
standard deviation. Since we consider the makespan distribution to be approximately normal, we use the Student’s t
and the chi-square distributions to compute these intervals and choose the number of simulations needed (see below).

Another issue that needs to be taken into account is the following. When doing a MC simulation of a deterministic
schedule using a stochastic task graph, it is not always possible, at runtime, to respect the start and end times of each
task (that is, the times that were computed using static estimates). To address this problem, we propose (and use) two
solutions. The first solution is that on each processor, we fully respect the order of the tasks, as it was produced by the
schedule. A task is scheduled for execution only when all the tasks that, according to this schedule, must be executed
before a given task have finished. We call this strategy sequence, because on a given processor, all tasks are executed
in the same order than in the static schedule. The second solution is to respect processor assignments of tasks onto
processors, but schedule ready tasks (that is, tasks whose parents have finished execution and all necessary data has
been transmitted to these tasks) as soon as they become ready. This means that, sometimes, the order of the tasks, as
given by the schedule for a single processor, may not be respected. We call this strategy assignment, because only the
processor assignments in the schedule are respected, not the order as well.

4 Methodology

There are two phases in our experiments: a deterministic phase and a stochastic phase. In the first phase (deterministic),
a specific DAG with static performance estimates is the input for each of the 20 static scheduling heuristics to generate
a schedule. These schedules are further evaluated in the stochastic phase.

Two types of DAG are considered in our experiments. One type is derived from the Montage astronomy applica-
tion [5]. The other is a random DAG, instances of which are randomly generated based on the following approach:
(1) specify the number of nodes; (2) specify the number of levels; (3) randomly allocate the number of nodes at each
level; (4) for each node except the exit, randomly appoint children nodes (at least one) in its lower neighbor level; (5)
for each isolated node (non-entry node without parent), randomly appoint parent nodes in its upper neighbour level. In
our experiments, we consider both Random and Montage DAGs with the following numbers of nodes: 58, 100, 500,
740, 1000, and 1186. By combining one type of DAG and one number, we generate 12 different DAGs.

We adopted the approach used in [3] to model task duration heterogeneity. A uniform random number R,.., ranging
from 1 to 10 is generated to describe resource heterogeneity, and another random number R, following the same
distribution is generated to describe task heterogeneity. Thus, the duration to run task ¢ on resource j is determined
by T j = Ryes X Reask. In addition, the communication cost is modeled to satisfy that the ratio between mean task
duration and mean communication duration is 1.0.

All DAGs can make use of 10 heterogeneous resources. Using this information, for each DAG generated as
described above and for each of the 20 heuristics mentioned in Section 2, a static schedule is obtained, which will be
assessed in the stochastic phase.

In the second phase of our experiments, once the deterministic graphs (and their schedules) have been produced,
task durations are replaced by a random variable (RV) having as a mean the values described above. The distribution
of these RV follows a Beta distribution with parameters « = 2 and g = 5 (see [10] for a justification). In order to fully
specify this, we also need to define the ratio between the maximum and the minimum bounds. We call this parameter
the uncertainty level (UL) and set it to 1.1 on average with a very low dispersion (the UL is thus almost constant).

CoreGRID TR-0120 3

Finally, we need to settle the number of MC simulations in order to have a relevant precision for the calculated
approximations of the makespan mean and standard deviation. To this end, we suppose that the makespan distribution
is normal (as hinted in [10]). We can then easily measure the confidence intervals of these approximations. We see
that for low variations of the makespan (as in our case), the variation of the standard deviation is preponderant and
only depends on the number of MC simulations. To have less than 5% of precision with a confidence level of 99%
we need 20,000 MC simulations. This amount increases quickly for better precision (750,000 for 1% of precision, for
example).

5 Experiments

5.1 Normality

Our study is based on the hypothesis that the makespan of a stochastic graph is normal (it follows a Gaussian distri-
bution). We validated this experimental hypothesis here by doing the Anderson-Darling (AD) test, which is one of the
best EDF omnibus tests for normality. Intuitively, the statistic obtained corresponds to the distance of the EDF with
a normal distribution. We observe that 96% of the schedules in the sequence case and 54% in the assignment case
have an AD statistic smaller than 30 (the same as a Student distribution with 8 degrees of freedom). As these AD tests
corroborate the normality assumption, we can reduce the simulation values to only 2 measures (average makespan and
standard deviation) almost without loss of information in most cases.

5.2 General observations

For each type of DAG, we have represented the performance of all the heuristics in Figure 1 to 24. Each heuristic has
a different symbol. The x-axis represents the average makespan of the schedule produced by the heuristic. The y-axis
shows the standard deviation, the metric we use for robustness; the error bars correspond to the confidence intervals of
each point with a confidence level of 99% (the probability for every point to be inside this range is 0.99). In addition,
we plot the best fitting linear function for the points based on the least squares method. It helps to see the degree of
correlation between the average value of the makespan and the robustness (more profound in the sequence case). The
24 figures included in Appendix | allow to compare the sequence and the assignment strategies for certain types of
DAG. While the average makespan does not change significantly in each case, the robustness is considerably worse
with the second strategy.

In the generation of stochastic graphs, the mean of each RV (random variable) is defined by the deterministic
values of the original task graph costs. Therefore, heuristics only consider the average of every RV. By adapting the
generation of stochastic graphs, we use the minimum of the RV and study this choice. We see in Figure 25 and 26 of
Appendix | that this has a low impact on the way schedules position themselves. This is due to the fact that the UL
(uncertainty level) of each cost is almost the same (the minimum is thus proportional to the mean of the RV).

Lastly, we try a bigger value for the UL, namely 1.5. Figure 27 and 28 of Appendix | depict this situation for one
specific task graph. There is again not significant change in comparison to experiments where UL = 1.1. For this
reason, we restrained our study to cases where the mean is used to generate RV and UL = 1.1.

5.3 Corredation

As observed in the above example, the makespan mean and standard deviation are highly correlated. We compute
the linear correlation coefficients (or Pearson coefficient) for each case and exhibit them in Table 1. This coefficient
denotes the linear relationship existing between two RV (the mean and standard deviation estimators here). It takes
values between —1, in the case of a decreasing linear relationship, and 1, in the case of an increasing linear relationship.
Values close to 0 indicate the absence of a linear relationship. When restricting to the sequence strategy, the results
show a strong correlation between mean and standard deviation in most cases (more than 0.7 in 75% of cases for
the sequence case). This confirms the results in [10] and extends them in that the currently studied schedules are
near-optimal.

CoreGRID TR-0120 4

strategy m58 ml100 m500 m740 m1000 m1186 58 r100 500 r740 rl1000 rl1186
assignment 055 0.20 -0.19 0.76 0.66 060 073 0.05 059 044 060 0.36
sequence 081 085 062 071 0.73 062 047 087 097 091 0097 0.89

Table 1: Correlation between makespan and robustness for the assignment and sequence strategies for different kind
of graphs

Mean Standard deviation
Graph Min 25% Med 75% Max| Min 25% Med 75% Max
m58 092 100 100 100 108| 079 100 100 125 138
m100 091 100 101 105 110| 095 181 433 58 105
m500 088 100 100 100 100| 094 100 100 125 490
mM740 08 100 100 100 100| 089 100 100 100 113

m1000 0.85 0.98 1.00 1.00 1.00 0.96 1.00 1.00 1.01 1.22
m1186 0.87 0.99 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.18

rs8 0.92 1.00 1.00 1.01 1.06 0.99 1.00 1.00 2.55 11.3
ri00 0.87 0.99 1.00 1.02 1.05 0.81 1.00 1.32 2.58 5.72
r500 0.82 0.91 1.01 1.03 1.07 1.48 2.50 3.88 5.93 8.46
r740 0.84 0.99 1.04 1.10 1.17 3.14 4.58 6.53 8.32 11.1
r1000 0.81 0.90 1.00 1.05 1.08 2.34 3.20 3.72 4.57 6.99
r1186 0.78 0.97 1.01 1.10 1.16 3.72 6.09 7.45 9.33 14.0

Table 2: Tukey’s five number summary (quartiles) of ratio between the assignment case and sequence case for
makespan and robustness, task graph view

5.4 Comparison of the sequence and assignment strategies

We now investigate the effect of the choice between assignment and sequence on the schedule performance. In the
example above, the most notable impact was an increase of the standard deviation in the assignment case. We compute
the ratio between the assignment case and the sequence case for the mean and the standard deviation respectively, and
show that this increase is a general trend. Tables 2 and 3 summarize these ratios by regrouping them with respect
to the task graph or with respect to the heuristics. This table can be read as follows. For the Montage graph with 58
nodes (m58), the minimum ratio is 0.92 and the maximum ratio is 1.08, for the average makespan. For the standard
deviation, 75% of the cases (from the 20 heuristics) have a ratio lower than 1.05. The first five columns indicate that, in
most cases, the makespan remains extremely stable (with only a few extra-cases having more than 10% of difference).
However, when there is a difference, the assignment strategy allows more gain than the sequence strategy. Regarding
the robustness metric, in most cases the assignment strategy is at least two times worse than the sequence strategy and
in extreme cases, it can be up to one order of magnitude worse. This signifies that the assignment strategy is inferior in
term of robustness but almost equal in terms of average makespan performance. In Table 3, this comparison can also
be thought as a kind of sensitivity analysis of the stability of the schedule generated by a given heuristic. Even though
the quantity of schedules is too low to draw any conclusion with respect to this point, we can see that heuristics such
as LMT, MaxMin, MSBC are among the most stable (see [6] for a complementary approach to stability). Similarly,
the montage graph seems to be in general less sensitive than random graphs.

5.5 Heuristic comparison

In this last part, we rank every heuristic with the sequence strategy as this strategy has been shown superior in the
previous section. Table 4 features the best heuristics in term of both the mean and the standard deviation of the
makespan, and for the two types of task graph (random and montage). While the precision for the makespan mean is
always below 0.1%, the precision for the standard deviation is only 5%. The corresponding columns are still relevant
but can slightly differ in reality. We observe that the best heuristic for the montage graphs is GDL and for the random
graphs, HEFT (in term of average makespan and robustness).

CoreGRID TR-0120 5

Mean Standard deviation
Heurlsties | \iin 2506 Med 75% Max | Min 25% Med 75% Max
BIL 003 099 100 104 113| 098 100 210 416 11.0
CPOP 087 090 091 099 110| 079 101 111 452 105
DPS 078 085 088 092 103| 089 101 324 540 959
Duplex 1.00 100 102 103 106 | 100 100 240 407 698
FCP 100 100 101 106 106 | 100 100 150 562 6.80
FLB 094 099 100 100 103| 09 100 193 368 846
GDL 100 100 101 104 116 | 099 100 224 591 111
HBMCT 100 100 102 106 110 | 098 100 341 731 972
HCPT 086 088 092 098 108| 094 108 330 545 138
HEFT 1.00 100 100 107 116 | 100 100 157 648 140
KDLA 1.00 100 102 105 117 | 099 100 279 555 894
LMT 091 09 098 100 103| 083 099 100 216 804
MaxMin 098 100 100 101 102 | 081 100 168 256 6.20
MCT 100 100 101 102 105| 100 100 272 467 850
MET 085 087 094 100 100| 092 100 156 699 113
MinMin 1.00 100 101 103 106 | 100 100 165 407 698
MSBC 082 087 098 100 100 | 100 104 120 253 446
OLB 098 100 100 100 102| 100 100 100 511 852
PCT 100 100 100 107 116 | 084 100 119 625 111
WBA 099 100 100 100 105| 100 100 103 370 801

Table 3: Tukey’s five number summary (quartiles) ratio between the assignment case and sequence case for makespan
and robustness, heuristics view

6 Conclusion

In this paper we have studied the robustness of 20 static makespan-centric DAG scheduling heuristics from the litera-
ture, using as a metric for robustness the standard deviation of the makespan over a large number of measurements.

Our results are three-fold. First, we have shown that it is better to respect the static order of the tasks on the
processors than to change this order dynamically. Second, we have shown that robustness and makespan are somehow
correlated: as it has been found elsewhere [20], schedules that perform well statically tend to be the most robust.
Third, we have shown that, for the cases we have studied, heuristics such as HEFT, HBMCT, GDL, PCT, are among
the best for both makespan and robustness.

Future work can be directed to the study of robustness-centric heuristics like slack-based one, convex clustering
strategies [6]. Another direction is to develop multi-criteria strategies (that both optimize robustness and makespan).
Lastly, it would be interesting to see how to deal with stochastic information inside a deterministic heuristic, instead
of only using the mean, as in this present work.

References

[1] 1. Ahmad, M.K. Dhodhi, and R. Ul-Mustafa. DPS: Dynamic Priority Scheduling Heuristic for Heterogeneous Computing
Systems. IEE Proceedings — Computers & Digital Techniques, 145(6), pp. 411-418, 1998.

[2] S.Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the Robustness of a resource Allocation. IEEE Transactions
on Parallel and Distributed Systems, 15(7):630-641, July 2004.

[3] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen and S. Ali. Task Execution Time Modeling for Heterogeneous Computing
System. Proceedings of Heterogeneous Computing Workshop 2000, pp. 185-199, 2000.

[4] O. Beaumont, V. Boudet, and Y. Robert. The Iso-Level Scheduling Heuristic for Heterogeneous Processors. Proceedings of
the 10th Euromicro Workshop on Parallel, Distributed and Network-Based Processing (PDP2002), 2002.

[5] G.B. Berriman, J.C. Good, A.C. Laity, A. Bergou, J. Jacob, D.S. Katz, E. Deelman, C. Kesselman, G. Singh, M. Su and R.
Williams. Montage: a Grid Enabled Image Mosaci Service for the National Virtual Observatory. Astronomical Data Analysis
Software and Systems X111 (ADASS XII1), Vol. 314, 2004.

CoreGRID TR-0120 6

Montage Random

Rank mean std dev mean std dev

1 GDL [1.7] GDL [2.0] HEFT [2.7] HEFT [3.7]
2 HBMCT [3.7] HEFT [2.8] PCT [3.3] PCT [4.2]
3 BIL [4.2] KDLA [3.3] Duplex [3.7] HBMCT [4.8]
4 HEFT [4.5] PCT [3.5] GDL [4.8] Duplex [5.7]
5 PCT [4.5] BIL [5.7] MinMin [5.5] GDL [6.3]
6 KDLA [6.3] HBMCT [6.8] MCT [7.2] KDLA [6.3]
7 Duplex [7.0] FCP [9.0] KDLA [7.3] MaxMin [6.7]
8 MCT [8.5] Duplex [10.7] MaxMin [7.5] MinMin [7.0]
9 MinMin [9.2] MSBC [10.8] HBMCT [7.8] MCT [9.5]
10 MaxMin [9.8] MaxMin [11.0] BIL [12.0] WBA [11.0]
11 FCP [11.0] CPOP [11.3] FCP [12.5] BIL [12.3]
12 WBA [11.7] MCT [12.3] WBA [13.0] DPS [12.3]
13 MSBC [13.7] WBA [13.0] LMT [14.2] HCPT [12.7]
14 OLB [13.8] MinMin [13.5] CPOP [14.3] LMT [13.7]
15 CPOP [14.2] LMT [13.8] FLB [14.3] CPOP [14.0]
16 FLB [15.0] OLB [14.5] HCPT [14.3] FCP [14.8]
17 LMT [16.0] FLB [14.7] DPS [14.8] FLB [15.2]
18 MET [18.3] DPS [15.7] MET [15.5] MET [15.2]
19 DPS [18.5] HCPT [16.5] OLB [16.8] OLB [17.0]
20 HCPT [18.5] MET [19.0] MSBC [18.3] MSBC [17.7]

(6]
[7]

8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

Table 4: Makespan and robustness ranking of the heuristics for the montage of random task graph cases

A. Mahjoub, D. Trystram. Stabilisation pour les applications parallles. In Flexibilité et robustesse en ordonnancement, 2005.

J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Task Scheduling Strategies for Workflow-Based
Applications in Grids. CCGrid 2005, 2005.

L. Boloni and D. C. Marinescu. Robust scheduling of metaprograms. Journal of Scheduling, 5(5):395-412, September 2002.

T.D. Braun, H.J. Siegel, N. Beck, et al. A Comparison of Eleven Static Heuristic for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems. Journal of Parallel and Distributed Computing, vol. 61, pp. 810-837,
2001.

L.-C. Canon and E. Jeannot. A Comparison of Robustness Metrics for Scheduling DAGs on Heterogeneous Systems. In
HeteroPar’07 sept. 2007.

H. Chen. On the Design of Task Scheduling in the Heterogeneous Computing Environments. IEEE Pacific Rim Conference
on Communications, Computers and Signal Processing, 2005.

D. England, J. Weissman, and J. Sadagopan. A New Metric for Robustness with Application to Job Scheduling. In 14th IEEE
International Symposium on High Performance Distributed Computing, pages 135-143, July 2005.

T. Hagras and J. Janecek. A Simple Scheduling Heuristic for Heterogeneous Computing Environments. Proceedings of the
2nd International Symposium on Parallel and Distributed Computing, pp. 104-110, 2003.

M. Iverson, F. Ozguner, and G. Follen. Parallelizing Existing Applications in a Distributed Heterogeneous Environment. 4th
Heterogeneous Computing Workshop (HCW?95), 1995.

JW.S. Liu and C.L. Liu. Bounds on scheduling algorithms for heterogeneous computing systems. Proceedings of IFIP
Congress 74, pp. 349-353, 1974.

S. Manoharan and N. P. Topham. An Assessment of Assignment Schemes for Dependency Graphs. Parallel Computing, 21(1),
pp. 85-107, 1995.

H. Oh and S. Ha. A Static Scheduling Heuristic for Heterogeneous Processors. Second International Euro-Par Conference
Proceedings, vol. 2, pp. 573-577, 1996.

A. Radulescu and A.V. Gemund Fast and Effective Task Scheduling in Heterogeneous Systems. 9th Heterogeneous Computing
Workshop, pp. 229-238, 2000.

R. Sakellariou and H. Zhao. A Hybrid Heuristic for DAG Scheduling on Heterogeneous Systems. Proceedings of IEEE
Heterogeneous Computing Workshop, IEEE Computer Society Press, 2004.

CoreGRID TR-0120 7

[20] R. Sakellariou and H. Zhao. A low-cost rescheduling policy for efficient mapping of workflows on grid systems. Scientific
Programming, 12(4), December 2004, pp. 253-262.

[21] V. Shestak, J. Smith, H. J. Siegel, and A. A. Maciejewski. A Stochastic Approach to Measuring the Robustness of Resource
Allocations in Distributed Systems. 2006 International Conference on Parallel Processing, August 2006.

[22] Z. Shi, E. Jeannot, and J. J. Dongarra. Robust Task Scheduling in Non-Deterministic Heterogeneous Computing Systems. In
Proceedings of IEEE International Conference on Cluster Computing, September 2006.

[23] G.C. Sih and E.A. Lee. A Compile-Time Scheduling Heuristic for Interconnection-Constrained Heterogeneous Processor
Architecture. IEEE Transactions on Parallel and Distributed Systems, Vol. 4, Issue. 2, pp. 175-187, 1993.

[24] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-Complexity Task Scheduling for Heterogeneous
Computing. IEEE Transactions on Parallel and Distributed Systems, Vol. 13, Issue. 3, pp. 260-274, 2002.

[25] N. Woo and H.Y. Yeom. K-Depth Look-Ahead Task Scheduling in Network of Heterogeneous Processors. Lecture Notes in
Computer Science, Vol. 2344, pp. 736-745, 2002.

CoreGRID TR-0120 8

Appendix |

Montage graph (58) in sequence

25 T T T T T
2.4 -
23 | T %
s J[- BIL +
= - CPOP x
© - -
g 22 - DPS x
3 P Duplex ©
T oLl o FCP =
8 : - FLB o
= 7 GDL o
= - HBMCT 2
2 - ~
c - HCPT =+
g - % HEFT v
?] KDLA v
£ 19t e % LMT o
> e MaxMin o
s MCT e
18 | B MET o
Bt MinMin o
Y MSBC o
1.7 B~ OB o
PCT o
WBA o
16 1 1 1 1 1
320 340 360 380 400

Average makespan

Figure 1: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (58) with only assignment

30 T T T T

25

20

15

10

Makespan standard deviaton

— 1 1 1 1

_-

BIL
CPOP
DPS
Duplex
FCP—
_FLB
-~ GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
oLB
PCT
WBA .

\
\
\.

SO 0G0 eD0 ¢ «4d »D>eoO B[O XX+

360 380
Average makespan

Figure 2: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

400

Montage graph (100) in sequence
3 T T T T T

2.8 =]

26 F + v////' BH% _

22 F 7 HCPT

Makespan standard deviaton
e
\

\
\
\
\
\
\,
ok
I
vg)
% 0]
s}=

18 7/’/E§ ﬁf MSBC

\
\
\
\

\

\
—e—i
cd
<
— >

600 CG0O®0 44 >»D>00EMOXX +

16 1 1 1 1
300 350 400 450 500 550 600

Average makespan

Figure 3: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (100) with only assignment

¢ BIL
15 + I CPOP
1 DPS

¥ Duplex--
__-—"FCP
T FLB
. = GDL
i I HBMCT
10 E: * s HCPT
. HEFT
T ® KDLA
e LMT
B MaxMin
a MCT
Sr . MET
MinMin
MSBC
¥ OLB
° PCT
WBA

0 1 1 1 1 1

300 350 400 450 500 550 600
Average makespan

\
\

O % X +
\

Makespan standard deviaton
\
\

O 0000 eD ¢4 »r>eoeOnN

Figure 4: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Montage graph (500) in sequence

35

MR

Makespan standard deviaton
\

6 O 0000 e ¢ 44 »r >0 NI XX +

1300

Figure 5: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

14 T

1400 1500
Average makespan

Montage graph (500) with only assignment

12

10

Makespan standard deviaton
oo
T

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT

MCT
MET
MinMin

N
X

*

=]

n

o

[)

A

A

v

v

*

MaxMin o
*

o

©

o

©

[5)

[~

Figure 6: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

1500
Average makespan

11

Montage graph (740) in sequence

6 T T T T T T
55 |- -
c sl } BIL -+
g CPop - x
> -7 D %
3 T Duplex ©
T 45} % % T FCP =
3 T FLB o
: e 4y coy -
7 T HBMCT. &
c 4t e HCPT » A
s } T HEFT v
2 o KDLA v
i T LMT
g 35 } T % % % MaxMin o A
T - MCT
- MET o
MinMin o
3¢ I MSBC o -
§t OLB o
¢ PCT o
WBA o
25 1 1 1 1 1 1
1800 1900 2000 2100 2200 2300 2400 2500

Average makespan

Figure 7: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (740) with only assignment

6 T T T T T T
55 o i
c 5k i } BIL +
% 7 CP x
= } P DRE x
3 e Duplex ©
s 45} % % e FCP =
ks FLB o
= ? b ¢ T GDL o
g HBMCT =
c 4| % /% HCPT »
] P HEFT ~
2 KDLA
< T I LMT
= 35 e MaxMin o —
- MCT
T MET o
MinMin o
3F 1 MSBC © -
§r OLB o
¢ PCT ©
WBA o
25 1 1 1 1 1 1
1800 1900 2000 2100 2200 2300 2400 2500

Average makespan

Figure 8: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Montage graph (1000) in sequence

6.5

55

s 0

Makespan standard deviaton

6 O 0000 e ¢ 44 »r >0 NI XX +

Figure 9: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

2600 2800 3000 3200
Average makespan

Montage graph (1000) with only assignment

3600

6.5 T T T T PEd T
ol + - _
S 55} % BIL +
= - % CPOP X
= % % - DPS x
S % e Duplex ©
° 5k % % FCP =
K - FLB o
= e GDL e
t % HBMCT =
c 45| } HCPT &
=] HEFT v
2 KDLA
< LMT
p 4 - 7 MaxMin o -
MCT e
1 . MET o
MinMin [
35+ ! MSBC o
$ OLB o
$ ¥ PCT o
i WBA Q@
3 1 1 1 1 1
2400 2600 2800 3000 3200 3400

Figure 10: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Average makespan

3600

13

Montage graph (1186) in sequence

7 T T T T T T
6.5 - A
6 % 7 .
S - BIL +
= { /'/,/'/ } CPO] X
= - D %
8 55} % e % Duplex o]
© % % % e FCP =
3 T FLB o
E st - GDL o
g " 3) HBMCT &
= 7 HCPT
- HEFT
o L - |
o 45 e ¢ KDLA v
£ - LMT
s T MaxMin o
4L - MCT o
- MET o
} MinMin o
i MSBC o
35 1 § OLB o
i PCT o
WBA o
3 1 1 1 1 1 1
2600 2800 3000 3200 3400 3600 3800 4000

Average makespan

Figure 11: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (1186) with only assignment

7 T T T T T T L
65 | e i
6 % e .
S o BIL ~
= { e CPOP x
S - DPS x
& 55¢ % % /}/’ uplex ©]
= % % 7 FCP =
3 s FLB o
£ 51 - GDL e
g ! - HBMCT =
= g HCPT
HEFT
o - R -
8 4.5 '//'/ KDLA v
< e LMT »
= 7 MaxMin o
a4l - MCT o -
- MET o
1 MinMin e
i MSBC o |
35 i § OLB o
PCT o
¢ WBA o
3 1 1 1 1 1 1
2600 2800 3000 3200 3400 3600 3800 4000

Average makespan

Figure 12: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Random graph (58) in sequence

34 T T T T T T T T
33 B
3.2 A
S B+ Bl
= ~—=77 CPOP x
.g 3.1 T DPS x
5 T Duplex o ¢
° 3| T FCP = |
ks T FLB o I
= =T GDL e
AP A HBMCT 2 |
c 29F- HCPT &
g HEFT v
2 KDLA
% 28 LMT o 7
s MaxMin]
MCT o
27 MET o T
MinMin o
MSBC o
2.6 | OLB o B
PCT o
WBA Qo
25 1 1 1 1 1 1 1 1
420 440 460 480 500 520 540 560 580 600

Average makespan

Figure 13: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (58) with only assignment

40 T T T T T T T T
35 % B
c 0T BIL +- |
g ¥ CPOP. -
= _DbPS x
L 5r _Duplex o]
o -7 "FCP =
k5 - FLB o
2 o0f GDL o -
g T HBMCT &
c - HCPT
o B 7 HEFT v |
g 15 5 L KDLA ~
2 - LMT o
= P MaxMin]
10 7 MCT . E
P * MET o
= 7 MinMin o
5 | - MSBC o |
- OLB o
®+ @ o Ne ® * PCT o
- WBA o
O 1 1 1 1 1 1 1 1
420 440 460 480 500 520 540 560 580 600

Average makespan

Figure 14: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Random graph (100) in sequence

T T T T T ,/‘

L BIL
} e CPOP

3L % e DPS
e Duplex

} P FCP
L % FLB

s GDL

% . HBMCT
s HCPT

25f t e HEFT
s KDLA

o LMT

e MaxMin

® A MCT
g MET

2 - %i ¢ MinMin
7 MSBC

' OLB
& 3 PCT

WBA

Makespan standard deviaton

6 O 0000 e ¢ 44 »r >0 NI XX +

1 1 1 1
500 600 700 800 900 1000 1100
Average makespan

Figure 15: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (100) with only assignment
14 T T T T T

12 § § 5 B

10 |+ BIL
¥ CPOP
¢ DPS

Duplex

8 L FCP
FLB
GDL
HBMCT
6 (] HCPT

< rb>e@OmOXX +
1

77777777777777777 LMT
ot e MaxMin
MCT®

° = MET

. v ° MinMin

o e) : MSBC
: OLB
PCT
WBA

Makespan standard deviaton

6 OO0 OG0 e ¢«

0 1 1 1 1
500 600 700 800 900 1000 1100
Average makespan

Figure 16: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Random graph (500) in sequence

6.5 T

55

4.5

Makespan standard deviaton

3.5 % 7

w
T T
\

25 L

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
OoLB
PCT
WBAI

6 O 0000 e ¢ 44 »r >0 NI XX +

1400 1600

Figure 17: Mean vs

1800

. standard deviation of the makespan of different heuristics with the sequence strategy.

2000 2200 2400 2600
Average makespan

Random graph (500) with only assignment

2800 3000

3200

50 T T T T T T T T
45 3 -
40 -
c é BIL +
S a5 L] CPOP x
S DPS _x~
S Duplex ~ ©
T 30F - FCP m A
3 s FLB o
£ T GDL e
S 251 T HBMCT 2
c o HCPT
T HEFT v
o -
o 20F% X T KDLA v 7
X T LMT o
S e T ® MaxMin o
15 1 T Tx MCT o
. e * . o MET °
10 7 = MinMin o i
MSBC o
5, ® . OLB e
s | PCT o |
WBA o
1 1 1 1 1 1 1 1
1400 1600 1800 2000 2200 2400 2600 2800 3000

Figure 18: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Average makespan

3200

17

Random graph (740) in sequence
65 T T T T T T T T

55 | : BIL
%// CPOP
7 DPS

- Duplex
5 { /f/% FCP
- FLB

E - GDL

5| g 4 oc

e HEFT

e KDLA

- } LMT
> MaxMin
s MCT

e MET
- E%§ MinMin
MSBC

OoLB
PCT
WBAI

Makespan standard deviaton

35

6 O 0000 e ¢ 44 »r >0 NI XX +

3 1 1 1 1 1 1 1
1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
Average makespan

Figure 19: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (740) with only assignment

50 ? -~ BL .
s CPOP

- DPS

- Duplex

e FCP
40 - ¢ 1 %§ - FLB

7 GDL
5F ¢ - HBMCT
pre HCPT

3 - i HEFT
30 | : KDLA
& LMT

R MaxMin

P MCT
- MET
20 s MinMin
- MSBC

- @ OLB
- PCT
lo 1 1 1 1 1 1 1 WB'A\I

1800 2000 2200 2400 2600 2800 3000 3200 3400 3600
Average makespan

Makespan standard deviaton
\

© O 0000 e ¢ 44 »r >0 NI XX +

Figure 20: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Random graph (1000) in sequence

9 T T T T T T

Makespan standard deviaton
()]
T
\
\

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
OoLB
PCT
WBIA

6 O 0000 e ¢ 44 »r >0 NI XX +

3
2000 2500 3000 3500 4000 4500 5000

Average makespan

Figure 21: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (1000) with only assignment
35 T T T T T T

5500

6000

¢

30 | E
25 | ¢ T é
20 | T

15 * T

Makespan standard deviaton

10

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
OoLB
PCT
WBIA

© O 0000 e ¢ 44 »r >0 NI XX +

5 1 1 1 1 1 1
2000 2500 3000 3500 4000 4500 5000

Average makespan

Figure 22: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

5500

6000

19

Random graph (1186) in sequence

8.5 T T T T
8 I %’/./ —
75 | % o .
c 7 L+
% 7+ /./"/ CF%)P X |
S e DPS x
kS { e Duplex ©
° e FCP]
E oesp % 2 FIB o
2 - % GDL
2 s } HBMCT &
c or %% %%/ - HCPT &
g P HEFT ~
2 7 KDLA +
< 55 7 LMT &]
s { 7 MaxMin o
= MCT e
S 7 MET o 7
T % MinMin o
MSBC o
45 OLB o 1
; %% PCT o
WBA e
4 1 1 1 1
3000 3500 4000 4500 5000

Average makespan

Figure 23: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (1186) with only assignment

65 T T T ‘// T
60 - % % e i
55 - e]
= i/' BIL +
I - CPOP x
© - P .
g 50 t 5 ® P DPS
3 7 Duplex ©
o . e FCP =
g8 ¢ T FLB o
S -7 E GDL e
g e HBMCT &
c 40T e HCPT &]
g T % HEFT ~
2 T KDLA v
< 3 7 LMT &]
s 7 é MaxMin o
s % VIS
e MET o 1
MinMin o
MSBC o
25 5 OB e A
PCT o
WBA o
20 1 1 1 1
3000 3500 4000 4500 5000

Average makespan

Figure 24: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Makespan standard deviaton

6.5

5.5

4.5

3.5

Random graph (500) in sequence (minimum case)

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
OoLB
PCT
WBA

6 O 0000 e ¢ 44 »r >0 NI XX +

1500 2000

2500

3000

Average makespan

Figure 25: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (500) with only assignment (minimum case)

50 T T T T
45 | i ;

40 -
g BIL™ -
2 CPOP x

5] L B
< 3 -7 DPS %
3 Duplex ©
° e FCP =
_g 30 » '/‘/./ FLB o
c P GDL e
2 - HBMCT =
c 25T o HCPT &
s o HEFT v
2 7 KDLA ~
< 20 | ® - LMT
= % - MaxMin o
e e MCT
15 e MET o
* MinMin o
% E3 MSBC o
10 - LI OB o
7 * PCT o
- WBA o

5 1 & 1 1 1

1500 2000 2500 3000

Figure 26: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Average makespan

21

Random graph (500) in sequence (UL=1.5)

26 T T T T T T T T]
24 | 7 % T
5 22 %/” BIL +
= } s CPOP x
g e DPS *
g 20r ,E/ Duplex o]
o I FCP =
g //' FLB o
g 18f = GDL e
g P HBMCT &
e 3 73 HCPT
g 6l PR HEFT v |
7 % KDLA v
k° - LMT
= 7 MaxMin o
14 | MCT » -
§ e MET o
3 -7 MinMin o
12 k- . MSBC o |
%/ ¢ 3 OLB o
PCT 5]
WBA Q
lo 1 1 1 1 1 1 1 1
1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

Figure 27: Mean vs

70 T

Average makespan

. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (500) with only assignment (UL=1.5)

50

Makespan standard deviaton

30

20F - %o

4
\
\
© O 0000 eD ¢ 444 »r>e0ONRIXX

A\
R
\

¢ BIL _
CPOP~
) __“pPs
-~ Duplex
7 FCP
7 FLB
e GDL
~ HBMCT
- HCPT
7 HEFT
% - KDLA
= LMT
7 MaxMin
P MCT
P MET
MinMin
MSBC
OLB
PCT

WBAI

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

Figure 28: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.

CoreGRID TR-0120

Average makespan

22

