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Abstract

In this paper we analyze the robustness of 20 static, makespan-centric, DAG scheduling heuristics of the literature.
We also study if dynamically changing the order of the tasks on their assigned processor improves the robustness.
Based on experimental results we investigate how robustness and makespan are correlated. Finally, the heuristics are
experimentally evaluated and ranked according to their performance in both robustness and makespan.

1 Introduction

With the emergence of distributed heterogeneous systems, such as grids, and the demand to run complex applications
such as workflows, the problem of choosing robust schedules becomes more and more important. Indeed, in such
environments, a carefully crafted schedule based on deterministic, statically-known, estimates for the execution time
of the different tasks that compose a given application, may prove to be grossly inefficient, as a result of various
unpredictable situations that may occur at run-time. Still, the existence of a good schedule is an important factor
affecting the overall performance of an application. Thus, to mitigate the impact of uncertainties, it is necessary to
choose a schedule that guarantees robustness, that is, a schedule that is affected as little as possible by various run-time
changes.

There are several ways to achieve robustness. A first approach is to overestimate the execution time of individual
tasks. This results in a waste of resources as it induces a lot of idle time during the execution, if the task duration is
much shorter than the estimation. Another solution is to reschedule tasks dynamically allocating them to an idle proces-
sor in order to take into account information that has been made available during the execution. However, rescheduling
a task is costly as it implies some extra communication costs and synchronization. Relevant studies [20] indicate that,
in addition to rescheduling, it is important to have a static schedule with good properties before the start of the execu-
tion. Therefore, even if a dynamic strategy is used, a good initial placement would reduce the possibility of making a
(later to be proved) bad decision and, hence, would reduce the extra costs of resorting to a dynamic strategy.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract | ST-2002-
004265).



A significant amount of work in the literature has focused on proposing static directed acyclic graph (DAG)
scheduling heuristics that minimize the overall application execution time (known as the makespan). However, to
the best of our knowledge, no study so far has tried to evaluate these heuristics with respect to the robustness of the
schedule they produce. In this paper, we assess the robustness of twenty DAG scheduling heuristics from the literature
designed to minimize the makespan.

In the remainder of this paper, Section 2 reviews related work on robustness and provides the definition used in
this paper. Section 3 presents the model used to assess heuristics in terms of robustness. Section 4 describes the
methodology of the experiments, Section 5 presents the experimental results and Section 6 concludes the paper.

2 Related work

The literature is abundant of makespan-centric static DAG scheduling heuristics. For our evaluation, we chose 20 of
these heuristics, which include some of the most widely used and cited. Due to lack of space, we refer the reader to
the relevant publications for the description of the heuristics. The 20 heuristics, in alphabetical order, are: BIL [17],
CPOP [4], DPS [1], Duplex [9], FCP [18], FLB [18], GDL [23], HBMCT [19], HCPT [13], HEFT [24], k-DLA [25],
LMT [14], MaxMin [9], MCT [9], MET [9], MinMin [7], MSBC [11], OLB [9], PCT [16], WBA [7].

Some work in the literature has attempted to define and model robustness; no widely accepted metric exists. In [2],
the authors propose a general method to define a metric for robustness. First, a performance metric is chosen (this is
the metric that needs to be robust). In our case, this performance metric is the makespan as we want the execution time
of an application to be as stable as possible. Second, one has to identify the parameters that make the performance
metric uncertain. In our case, it is the individual duration of the tasks and communications. Third, one needs to find
how a modification of these parameters changes the value of the performance metric. In our case, the answer is fairly
simple, as an increase of the task or communication duration generally implies an increase of the execution time (even
though, in some cases, a task may have a longer duration than expected and due to the structure of the schedule, such
modification may not impact the overall makespan). Lastly, one has to identify the smallest variation of a parameter
that makes the performance metric exceed an acceptable bound. A schedule A is said to be more robust than a schedule
B if this variation is larger for A than for B. However, estimating this variation is the most difficult part as it requires
to analyze deeply the structure of the problem and its inputs.

In order to simplify this framework, research in the context of evaluating the robustness of the makespan has
proposed several other metrics, such as: the slack [8, 22, 20]; the probability that an execution exceed some expected
bounds [21] (called the probabilistic metric); measures based on the Kolmogorov-Smirnov (KS) distance between
the cumulative distribution (CDF) of the performance metric under normal operating conditions and the CDF of the
same performance metric when perturbation applies [12]; or the differential entropy of the makespan [8]. In [10],
we have studied the differences between these metrics and have concluded that the makespan standard deviation, the
probabilistic metric and the differential entropy are highly correlated. This correlation was possibly due to the quasi-
normality of the makespan distribution. Intuitively, the standard deviation of the makespan distribution indicates how
narrow this distribution is. The narrower the distribution, the smaller the standard deviation is. This metric is related
to the robustness because when two schedules are given the one for which the standard deviation is smallest is the
one for which actual executions are more likely to have a makespan close to the average value. Mathematically, over
several different values of the makespan, the standard deviation is given by oy = \/avg(M?2) — avg(M)2, where
avg(M) is the average value of all makespan values available. The standard deviation will be used as a metric to
assess robustness in this paper.

3 A Stochastic Model to Assess Robustness

We are given an application that is modeled by a stochastic task graph. This graph is a DAG, where vertices represent
computational tasks and edges represent task dependencies (often due to communication). To model the uncertainty,
task and communication cost are given by a random variable that follows a specific law (which can be different for all
the tasks and communications). Hence, for each execution of the graph these costs may be different.

The task graph is executed on a set of heterogeneous resources. We assume that the topology of this infrastructure is
complete (every machine can communicate to every one). We use the related model [15] concerning CPU capabilities:
each CPU i is given a value 7, the time to execute one instruction. This means that if the cost of a task drawn from its

CoreGRID TR-0120 2



random variable is ¢ the execution time of this task on processor i is ¢;. Concerning communication, we model each
link by its latency («) and its bandwidth (). The time to send m bytes on link 4 is then a. + 5 x m.

As we use static makespan-centric scheduling heuristics to map tasks onto the processors, we need to adapt the
model to compute the schedule. We also need to compute the distribution of the makespan to determine its mean
(average makespan) and its standard deviation (robustness).

To solve the above issues, we have proceeded as follows. Given a stochastic task graph, we transform it to a
deterministic task graph by using only the mean value of the communication and task duration. With this deterministic
task graph, we compute a schedule using one of our 20 heuristics. To compute the distribution of the makespan, we
simulate, a large number of times, the execution of the schedule on the (heterogeneous) resources. This is a Monte-
Carlo (MC) method, which means that each time a value for the duration of a task or communication is needed,
this value is generated using the random variable that described it in the stochastic task graph. This allows us to
compute the empirical distribution function (EDF), which converges to the true law of the makespan as the number
of simulations increases, as stated by the Glivenko-Cantelli theorem. The precision achievable with a given number
of MC simulations is given by the confidence intervals of the calculated approximations of the makespan mean and
standard deviation. Since we consider the makespan distribution to be approximately normal, we use the Student’s t
and the chi-square distributions to compute these intervals and choose the number of simulations needed (see below).

Another issue that needs to be taken into account is the following. When doing a MC simulation of a deterministic
schedule using a stochastic task graph, it is not always possible, at runtime, to respect the start and end times of each
task (that is, the times that were computed using static estimates). To address this problem, we propose (and use) two
solutions. The first solution is that on each processor, we fully respect the order of the tasks, as it was produced by the
schedule. A task is scheduled for execution only when all the tasks that, according to this schedule, must be executed
before a given task have finished. We call this strategy sequence, because on a given processor, all tasks are executed
in the same order than in the static schedule. The second solution is to respect processor assignments of tasks onto
processors, but schedule ready tasks (that is, tasks whose parents have finished execution and all necessary data has
been transmitted to these tasks) as soon as they become ready. This means that, sometimes, the order of the tasks, as
given by the schedule for a single processor, may not be respected. We call this strategy assignment, because only the
processor assignments in the schedule are respected, not the order as well.

4 Methodology

There are two phases in our experiments: a deterministic phase and a stochastic phase. In the first phase (deterministic),
a specific DAG with static performance estimates is the input for each of the 20 static scheduling heuristics to generate
a schedule. These schedules are further evaluated in the stochastic phase.

Two types of DAG are considered in our experiments. One type is derived from the Montage astronomy applica-
tion [5]. The other is a random DAG, instances of which are randomly generated based on the following approach:
(1) specify the number of nodes; (2) specify the number of levels; (3) randomly allocate the number of nodes at each
level; (4) for each node except the exit, randomly appoint children nodes (at least one) in its lower neighbor level; (5)
for each isolated node (non-entry node without parent), randomly appoint parent nodes in its upper neighbour level. In
our experiments, we consider both Random and Montage DAGs with the following numbers of nodes: 58, 100, 500,
740, 1000, and 1186. By combining one type of DAG and one number, we generate 12 different DAGs.

We adopted the approach used in [3] to model task duration heterogeneity. A uniform random number R,.., ranging
from 1 to 10 is generated to describe resource heterogeneity, and another random number R, following the same
distribution is generated to describe task heterogeneity. Thus, the duration to run task ¢ on resource j is determined
by T j = Ryes X Reask. In addition, the communication cost is modeled to satisfy that the ratio between mean task
duration and mean communication duration is 1.0.

All DAGs can make use of 10 heterogeneous resources. Using this information, for each DAG generated as
described above and for each of the 20 heuristics mentioned in Section 2, a static schedule is obtained, which will be
assessed in the stochastic phase.

In the second phase of our experiments, once the deterministic graphs (and their schedules) have been produced,
task durations are replaced by a random variable (RV) having as a mean the values described above. The distribution
of these RV follows a Beta distribution with parameters « = 2 and g = 5 (see [10] for a justification). In order to fully
specify this, we also need to define the ratio between the maximum and the minimum bounds. We call this parameter
the uncertainty level (UL) and set it to 1.1 on average with a very low dispersion (the UL is thus almost constant).
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Finally, we need to settle the number of MC simulations in order to have a relevant precision for the calculated
approximations of the makespan mean and standard deviation. To this end, we suppose that the makespan distribution
is normal (as hinted in [10]). We can then easily measure the confidence intervals of these approximations. We see
that for low variations of the makespan (as in our case), the variation of the standard deviation is preponderant and
only depends on the number of MC simulations. To have less than 5% of precision with a confidence level of 99%
we need 20,000 MC simulations. This amount increases quickly for better precision (750,000 for 1% of precision, for
example).

5 Experiments

5.1 Normality

Our study is based on the hypothesis that the makespan of a stochastic graph is normal (it follows a Gaussian distri-
bution). We validated this experimental hypothesis here by doing the Anderson-Darling (AD) test, which is one of the
best EDF omnibus tests for normality. Intuitively, the statistic obtained corresponds to the distance of the EDF with
a normal distribution. We observe that 96% of the schedules in the sequence case and 54% in the assignment case
have an AD statistic smaller than 30 (the same as a Student distribution with 8 degrees of freedom). As these AD tests
corroborate the normality assumption, we can reduce the simulation values to only 2 measures (average makespan and
standard deviation) almost without loss of information in most cases.

5.2 General observations

For each type of DAG, we have represented the performance of all the heuristics in Figure 1 to 24. Each heuristic has
a different symbol. The x-axis represents the average makespan of the schedule produced by the heuristic. The y-axis
shows the standard deviation, the metric we use for robustness; the error bars correspond to the confidence intervals of
each point with a confidence level of 99% (the probability for every point to be inside this range is 0.99). In addition,
we plot the best fitting linear function for the points based on the least squares method. It helps to see the degree of
correlation between the average value of the makespan and the robustness (more profound in the sequence case). The
24 figures included in Appendix | allow to compare the sequence and the assignment strategies for certain types of
DAG. While the average makespan does not change significantly in each case, the robustness is considerably worse
with the second strategy.

In the generation of stochastic graphs, the mean of each RV (random variable) is defined by the deterministic
values of the original task graph costs. Therefore, heuristics only consider the average of every RV. By adapting the
generation of stochastic graphs, we use the minimum of the RV and study this choice. We see in Figure 25 and 26 of
Appendix | that this has a low impact on the way schedules position themselves. This is due to the fact that the UL
(uncertainty level) of each cost is almost the same (the minimum is thus proportional to the mean of the RV).

Lastly, we try a bigger value for the UL, namely 1.5. Figure 27 and 28 of Appendix | depict this situation for one
specific task graph. There is again not significant change in comparison to experiments where UL = 1.1. For this
reason, we restrained our study to cases where the mean is used to generate RV and UL = 1.1.

5.3 Corredation

As observed in the above example, the makespan mean and standard deviation are highly correlated. We compute
the linear correlation coefficients (or Pearson coefficient) for each case and exhibit them in Table 1. This coefficient
denotes the linear relationship existing between two RV (the mean and standard deviation estimators here). It takes
values between —1, in the case of a decreasing linear relationship, and 1, in the case of an increasing linear relationship.
Values close to 0 indicate the absence of a linear relationship. When restricting to the sequence strategy, the results
show a strong correlation between mean and standard deviation in most cases (more than 0.7 in 75% of cases for
the sequence case). This confirms the results in [10] and extends them in that the currently studied schedules are
near-optimal.
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strategy m58 ml100 m500 m740 m1000 m1186 58 r100 500 r740 rl1000 rl1186
assignment 055 0.20 -0.19 0.76 0.66 060 073 0.05 059 044 060 0.36
sequence 081 085 062 071 0.73 062 047 087 097 091 0097 0.89

Table 1: Correlation between makespan and robustness for the assignment and sequence strategies for different kind
of graphs

Mean Standard deviation
Graph Min  25%  Med  75%  Max| Min  25%  Med  75%  Max
m58 092 100 100 100  108| 079 100 100 125 138
m100 091 100 101 105 110| 095 181 433 58 105
m500 088 100 100 100  100| 094 100 100 125 490
mM740 08 100 100 100  100| 089 100 100 100 113

m1000 0.85 0.98 1.00 1.00 1.00 0.96 1.00 1.00 1.01 1.22
m1186 0.87 0.99 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.18

rs8 0.92 1.00 1.00 1.01 1.06 0.99 1.00 1.00 2.55 11.3
ri00 0.87 0.99 1.00 1.02 1.05 0.81 1.00 1.32 2.58 5.72
r500 0.82 0.91 1.01 1.03 1.07 1.48 2.50 3.88 5.93 8.46
r740 0.84 0.99 1.04 1.10 1.17 3.14 4.58 6.53 8.32 11.1
r1000 0.81 0.90 1.00 1.05 1.08 2.34 3.20 3.72 4.57 6.99
r1186 0.78 0.97 1.01 1.10 1.16 3.72 6.09 7.45 9.33 14.0

Table 2: Tukey’s five number summary (quartiles) of ratio between the assignment case and sequence case for
makespan and robustness, task graph view

5.4 Comparison of the sequence and assignment strategies

We now investigate the effect of the choice between assignment and sequence on the schedule performance. In the
example above, the most notable impact was an increase of the standard deviation in the assignment case. We compute
the ratio between the assignment case and the sequence case for the mean and the standard deviation respectively, and
show that this increase is a general trend. Tables 2 and 3 summarize these ratios by regrouping them with respect
to the task graph or with respect to the heuristics. This table can be read as follows. For the Montage graph with 58
nodes (m58), the minimum ratio is 0.92 and the maximum ratio is 1.08, for the average makespan. For the standard
deviation, 75% of the cases (from the 20 heuristics) have a ratio lower than 1.05. The first five columns indicate that, in
most cases, the makespan remains extremely stable (with only a few extra-cases having more than 10% of difference).
However, when there is a difference, the assignment strategy allows more gain than the sequence strategy. Regarding
the robustness metric, in most cases the assignment strategy is at least two times worse than the sequence strategy and
in extreme cases, it can be up to one order of magnitude worse. This signifies that the assignment strategy is inferior in
term of robustness but almost equal in terms of average makespan performance. In Table 3, this comparison can also
be thought as a kind of sensitivity analysis of the stability of the schedule generated by a given heuristic. Even though
the quantity of schedules is too low to draw any conclusion with respect to this point, we can see that heuristics such
as LMT, MaxMin, MSBC are among the most stable (see [6] for a complementary approach to stability). Similarly,
the montage graph seems to be in general less sensitive than random graphs.

5.5 Heuristic comparison

In this last part, we rank every heuristic with the sequence strategy as this strategy has been shown superior in the
previous section. Table 4 features the best heuristics in term of both the mean and the standard deviation of the
makespan, and for the two types of task graph (random and montage). While the precision for the makespan mean is
always below 0.1%, the precision for the standard deviation is only 5%. The corresponding columns are still relevant
but can slightly differ in reality. We observe that the best heuristic for the montage graphs is GDL and for the random
graphs, HEFT (in term of average makespan and robustness).
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Mean Standard deviation
Heurlsties | \iin 2506 Med  75%  Max | Min  25%  Med  75%  Max
BIL 003 099 100 104  113| 098 100 210 416  11.0
CPOP 087 090 091 099  110| 079 101 111 452 105
DPS 078 085 088 092  103| 089 101 324 540 959
Duplex 1.00 100 102 103 106 | 100 100 240 407 698
FCP 100 100 101 106 106 | 100 100 150 562  6.80
FLB 094 099 100 100  103| 09 100 193 368 846
GDL 100 100 101 104 116 | 099 100 224 591 111
HBMCT 100 100 102 106 110 | 098 100 341 731 972
HCPT 086 088 092 098  108| 094 108 330 545 138
HEFT 1.00 100 100 107 116 | 100 100 157 648 140
KDLA 1.00 100 102 105 117 | 099 100 279 555 894
LMT 091 09 098 100 103| 083 099 100 216 804
MaxMin 098 100 100 101 102 | 081 100 168 256  6.20
MCT 100 100 101 102  105| 100 100 272 467 850
MET 085 087 094 100  100| 092 100 156 699 113
MinMin 1.00 100 101 103 106 | 100 100 165 407 698
MSBC 082 087 098 100 100 | 100 104 120 253 446
OLB 098 100 100 100  102| 100 100 100 511 852
PCT 100 100 100 107 116 | 084 100 119 625 111
WBA 099 100 100 100  105| 100 100 103 370 801

Table 3: Tukey’s five number summary (quartiles) ratio between the assignment case and sequence case for makespan
and robustness, heuristics view

6 Conclusion

In this paper we have studied the robustness of 20 static makespan-centric DAG scheduling heuristics from the litera-
ture, using as a metric for robustness the standard deviation of the makespan over a large number of measurements.

Our results are three-fold. First, we have shown that it is better to respect the static order of the tasks on the
processors than to change this order dynamically. Second, we have shown that robustness and makespan are somehow
correlated: as it has been found elsewhere [20], schedules that perform well statically tend to be the most robust.
Third, we have shown that, for the cases we have studied, heuristics such as HEFT, HBMCT, GDL, PCT, are among
the best for both makespan and robustness.

Future work can be directed to the study of robustness-centric heuristics like slack-based one, convex clustering
strategies [6]. Another direction is to develop multi-criteria strategies (that both optimize robustness and makespan).
Lastly, it would be interesting to see how to deal with stochastic information inside a deterministic heuristic, instead
of only using the mean, as in this present work.
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Appendix |

Montage graph (58) in sequence
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Figure 1: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (58) with only assignment
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Figure 2: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Montage graph (100) in sequence
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Figure 3: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (100) with only assignment
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Figure 4: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Montage graph (500) in sequence
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Figure 5: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.
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Montage graph (500) with only assignment
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Figure 6: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Montage graph (740) in sequence
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Figure 7: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (740) with only assignment
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Figure 8: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Montage graph (1000) in sequence
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Figure 9: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.
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Montage graph (1000) with only assignment
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Figure 10: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Montage graph (1186) in sequence
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Figure 11: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Montage graph (1186) with only assignment
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Figure 12: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (58) in sequence
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Figure 13: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (58) with only assignment
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Figure 14: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (100) in sequence
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Figure 15: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (100) with only assignment
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Figure 16: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (500) in sequence
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Figure 18: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (740) in sequence
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Figure 19: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (740) with only assignment
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Figure 20: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (1000) in sequence
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Figure 21: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (1000) with only assignment
35 T T T T T T

5500

6000

¢

30 | E
25 | ¢ T é
20 | T

15 * T

Makespan standard deviaton

10

BIL
CPOP
DPS
Duplex
FCP
FLB
GDL
HBMCT
HCPT
HEFT
KDLA
LMT
MaxMin
MCT
MET
MinMin
MSBC
OoLB
PCT
WBIA

© O 0000 e ¢ 44 »r >0 NI XX +

5 1 1 1 1 1 1
2000 2500 3000 3500 4000 4500 5000

Average makespan

Figure 22: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (1186) in sequence
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Figure 23: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (1186) with only assignment
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Figure 24: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Figure 25: Mean vs. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (500) with only assignment (minimum case)
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Figure 26: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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Random graph (500) in sequence (UL=1.5)
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. standard deviation of the makespan of different heuristics with the sequence strategy.

Random graph (500) with only assignment (UL=1.5)
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Figure 28: Mean vs. standard deviation of the makespan of different heuristics with the assignment strategy.
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