MSc COMP6012

Automated Reasoning Who, What, When, Where, Why?

Renate Schmidt

(email: schmidt@cs.man.ac.uk)

Alan Williams

(email: alanw@cs.man.ac.uk)

September 2006

Why?

System Design:

• The Pentium Bug

Why?

- The Pentium Bug
- The Pentium II Bug

Why?

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996

Why?

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .

Why?

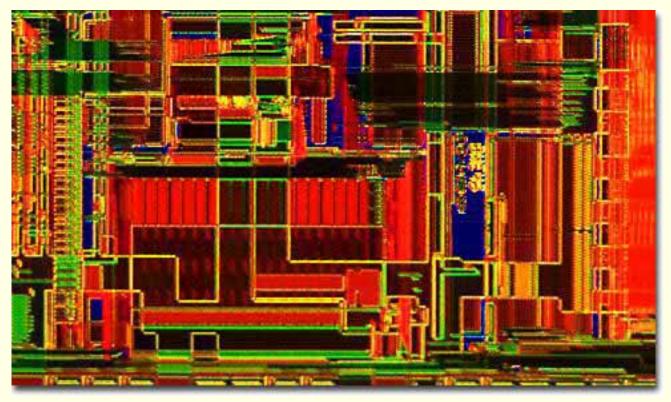
- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .

Why?

- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .
- Future: Internet encryption bug???...

Why?

System Design:


- The Pentium Bug
- The Pentium II Bug
- Arriane 5 Failure, 4 June 1996
- software + hardware specification and design errors . . .
- increasing design complexity . . .
- Future: Internet encryption bug???...hasn't been found...yet

Or. . .

Mathematical Logical Foundations

http://www.dutchspace.nl/

http://micro.magnet.fsu.edu

Why You May Wish To Take COMP6012

- Inform/support other MSc course units (but not pre/co-requisites):
 - COMP6016: Knowledge Representation and Reasoning
 - COMP6039: Computer Security
 - COMP6046: The Semantic Web: Ontologies and OWL
- Mathematical Logic
- System Design: hardware, software, GRID, secure, biological...
- Design tool development: CAD, IDEs

What?

• (System property or component description via formal logic)

What?

• (System property or component description via formal logic)

• Logical reasoning

What?

• (System property or component description via formal logic)

- Logical reasoning
- Automation: decision procedures

What?

• (System property or component description via formal logic)

- Logical reasoning
- Automation: decision procedures
- Advanced techniques for efficiency

What?

(System property or component description via formal logic)

- Logical reasoning
- Automation: decision procedures
- Advanced techniques for efficiency
- Associated theoretical concepts, e.g. soundness and completeness

Course Outline

When?

Where?

Period 1, Semester 1 Lectures: 2.15

Mondays Labs: 2.25a

A Course of Two Halves:

- 1. Formal Logic and Automated Reasoning (AJW)
- 2. Advanced Automated Reasoning (RenS)

Pre-requisites: Familiarity with Propositional Logic

Part I: Formal Logic and Automated Reasoning

- Classical Propositional Logic
- First-order Predicate Logic
- Automated Reasoning: Methods and Tools, including
 - resolution
 - logic programming

Reasoning Example

Assumptions:

Reasoning Example

Assumptions:

IF I live in Manchester THEN it is SUNNY

Reasoning Example

Assumptions:

IF I live in Manchester THEN it is SUNNY

IF it is raining THEN I need a PARASOL

Reasoning Example

Assumptions:

IF I live in Manchester THEN it is SUNNY

IF it is raining THEN I need a PARASOL

Conclusion:

IF I live in Manchester THEN I need an PARASOL

The Resolution Principle

The Resolution Principle

Assumptions: $(A \lor B)$ $(C \lor \neg B)$

The Resolution Principle

Assumptions: $(A \lor B)$ $(C \lor \neg B)$

Conclusion: $(A \lor C)$

The Resolution Principle

Assumptions: $(A \lor B)$ $(C \lor \neg B)$

Conclusion: $(A \lor C)$

The basis of

- Automated Theorem-proving: e.g. Vampire (Andrei Voronkov)
- Logic Programming: e.g. Prolog

COMP6012

Logic Programming and Prolog

1-7

Logic Programming and Prolog

```
Prolog Program — rules and facts:
    ancestor(X,Y) :- parent(X,Y).
    ancestor(X,Y) :- parent(X,Z),
                       ancestor(Z,Y).
    parent(sue, toby).
    parent(roy, sue).
Run program:
?- ancestor(roy,X).
X = sue;
X = toby;
```

Part II: Advanced Techniques Why:

- The basic resolution calculus is very simple
 - Just two rules
 - Extremely prolific at generating new conclusions
 - Inefficient, impracticable

Part II: Advanced Techniques Why:

- The basic resolution calculus is very simple
 - Just two rules
 - Extremely prolific at generating new conclusions
 - Inefficient, impracticable
- Advanced techniques are available
- Part II is devoted to Advanced Automated Reasoning

Emphasis in Part II

Foundations of advanced automated theorem proving

- Selection of important topics
- Many examples and exercises

Emphasis in Part II

- Foundations of advanced automated theorem proving
 - Selection of important topics
 - Many examples and exercises
- Two styles of inference systems
 - Resolution: local, "forward"
 - Semantic tableau: global, goal-oriented,
 "backward"

Emphasis in Part II

- Foundations of advanced automated theorem proving
 - Selection of important topics
 - Many examples and exercises
- Two styles of inference systems
 - Resolution: local, "forward"
 - Semantic tableau: global, goal-oriented, "backward"
- Important basic properties
 - Soundness → no false conclusions are drawn
 - Completeness → all true conclusions are drawn
 - Efficiency → avoid unnecessary inferences

Modern Resolution Framework

• Best provers use resolution

Modern Resolution Framework

- Best provers use resolution
- Modern resolution framework = an extension of basic resolution calculus with:
 - Powerful search control mechanisms
 - → ordering and selection refinements
 - General notion of redundancy
 - → simplification and optimisation techniques
 - optimised transformations into clausal form

Modern Resolution Framework

- Best provers use resolution
- Modern resolution framework = an extension of basic resolution calculus with:
 - Powerful search control mechanisms
 - → ordering and selection refinements
 - General notion of redundancy
 - → simplification and optimisation techniques
 - optimised transformations into clausal form
- Has many uses and applications
 - This course: verfication of Neuman-Stubblebine key exchange protocol
- Fast implementations: Vampire, (M)SPASS

Semantic tableau

• Given by a set of inference rules, e.g.:

$$F \wedge G$$
 $F \vee G$

$$rac{F}{G}$$

- Used to construct derivation trees
- Basis for semantic tableau provers

Topics of Current Research

- Developing practical decision procedures
- Handling specific theories (equality, transitive relations, ...) or logics (description logics, modal logics, ...)
- Implementing fast automated theorem provers
- Relationship between different proof methods (resolution & tableau,
 ...)
- Combining different proof methods and different provers
- Specific applications:
 - Software engineering
 - Ontologies and the semantic web
 - Multi-agent systems

Lectures:

- include Examples Classes
- paper-based Exercises (some assessed)

Labs:

- Approximately 35% of Teaching Time is lab
- Prolog
 - build a resolution theorem-prover
 - extend with advanced techniques
- try out MSPASS, Vampire

Reading List

• 'Course Text':

Kelly, J. (1997), The Essence of Logic. Prentice Hall.

Recommended:

Schöning, U. (1989), Logic for Computer Scientists. Birkhäuser.

Fitting, M. (1990), First-Order Logic and Automated Theorem Proving. Springer.

Assessment

- Examination (40%)
 - open book
- Exercises and labs (60%)