COMP6012: Automated Reasoning, Part II Advanced Topics Optional Material

Renate Schmidt

School of Computer Science University of Manchester

schmidt@cs.man.ac.uk

http://www.cs.man.ac.uk/~schmidt/COMP60121/

Overview ...

These slides cover additional topics which couldn't be covered in lectures. In particular:

- Soundness and refutational completeness of Res for first-order clause logic
- Lexicographic orderings, reduction orderings

COMP6012: Automated Reasoning II

Optional material (unassessed)

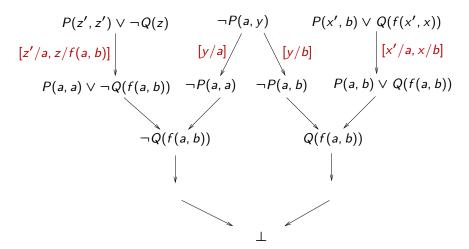
Generalising Resolution to Non-Ground Clauses

- Propositional/ground resolution:
 - ► refutationally complete,
 - in its most naive version:
 not guaranteed to terminate for satisfiable sets of clauses,
 (improved versions do terminate, however)
 - clearly inferior to the DPLL procedure (even with various improvements).
- But: in contrast to the DPLL procedure, resolution can be easily extended to non-ground clauses.

- p.2

General Resolution through Instantiation

Idea: instantiate clauses appropriately:



- p.5

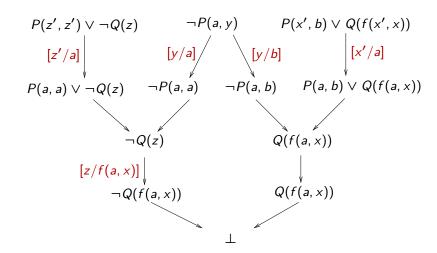
- p.6

General Resolution through Instantiation: Problems

- Problems:
 - ► More than one instance of a clause can participate in a proof.
 - ► Even worse: There are infinitely many possible instances.
- Observation:
 - ► Instantiation must produce complementary literals (so that inferences become possible).
- Idea:
 - ► Do not instantiate more than necessary to get complementary literals.

General Resolution through Lazy Instantiation

Idea: do not instantiate more than necessary:



Lifting Principle

Problem:

Make saturation of infinite sets of clauses as they arise from taking the (ground) instances of finitely many general clauses (with variables) effective and efficient.

- Idea (Robinson 1965):
 - Resolution for general clauses:
 - Equality of ground atoms (matching) is generalised to unifiability of general atoms;
 - ► Only compute most general (minimal) unifiers.

Lifting Principle (cont'd)

• Significance:

- ► The advantage of the method in Robinson (1965) compared with Gilmore (1960) is that unification enumerates only those instances of clauses that participate in an inference.
- Moreover, clauses are not right away instantiated into ground clauses. Rather they are instantiated only as far as required for an inference.
- ► Inferences with non-ground clauses in general represent infinite sets of ground inferences which are computed simultaneously in a single step.

Resolution for General Clauses (cont'd)

- For inferences with more than one premise, we assume that the variables in the premises are (bijectively) renamed such that they become different to any variable in the other premises.
- We do not formalize this. Which names one uses for variables is otherwise irrelevant.

- p.9

Resolution for General Clauses

• General binary resolution calculus *Res*:

$$\frac{C \vee A \qquad D \vee \neg B}{(C \vee D)\sigma} \quad \text{if } \sigma = \text{mgu}(A, B) \quad \text{(resolution)}$$

$$\frac{C \vee A \vee B}{(C \vee A)\sigma} \quad \text{if } \sigma = \text{mgu}(A, B) \quad \text{(positive factoring)}$$

• General resolution calculus *RIF* with implicit factoring:

$$\frac{C \vee A_1 \vee \ldots \vee A_n \qquad D \vee \neg B}{(C \vee D)\sigma}$$
if $\sigma = \text{mgu}(A_1, \ldots, A_n, B)$

Lifting Lemma

Lemma 1

Let C and D be variable-disjoint clauses. If

$$\begin{array}{ccc} C & D \\ \downarrow \sigma & \downarrow \rho \\ \hline \frac{C\sigma & D\rho}{C'} & \text{(propositional resolution)} \end{array}$$

then there exist C'' and a substitution au such that

$$\frac{C \quad D}{C''} \qquad \text{(general resolution)}$$

$$\downarrow \quad \tau$$

$$C' = C''\tau$$

Lifting Lemma (cont'd)

• An analogous lifting lemma holds for factoring.

- p.13

- p.14

Saturation of Sets of General Clauses

Recall that $G_{\Sigma}(N)$ denotes the set of ground instances of N over the signature Σ .

Corollary 2

Let N be a set of general clauses saturated under Res, i.e. $Res(N) \subseteq N$. Then also $G_{\Sigma}(N)$ is saturated, that is,

$$Res(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N)$$
.

Saturation of Sets of General Clauses (cont'd)

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-disjoint. (Otherwise make them disjoint, and this renaming process changes neither Res(N) nor $G_{\Sigma}(N)$.) Let $C' \in Res(G_{\Sigma}(N))$, meaning

- (i) there exist resolvable ground instances $C\sigma$ and $D\rho$ of C and D belonging to N and C' is their resolvent, or else
- (ii) C' is a factor of a ground instance $C\sigma$ of $C \in N$.

Case (i): By the Lifting Lemma, C and D are resolvable with a resolvent C'' with $C''\tau=C'$, for a suitable ground substitution τ . As $C''\in N$ by assumption, we obtain that $C'\in G_{\Sigma}(N)$. Case (ii): Similar (exercise).

Herbrand's Theorem

Lemma 3

Let N be a set of Σ -clauses, let \mathcal{M} be an interpretation. Then $\mathcal{M} \models N$ implies $\mathcal{M} \models G_{\Sigma}(N)$.

Lemma 4

Let N be a set of Σ -clauses, let I be a Herbrand interpretation. Then $I \models G_{\Sigma}(N)$ implies $I \models N$.

Herbrand's Theorem (cont'd)

Property 5 (Herbrand Theorem)

A set N of Σ -clauses is satisfiable iff it has a Herbrand model over Σ .

Proof:

The " \Leftarrow " part is trivial. For the " \Rightarrow " part let $N \not\models \bot$.

$$N \not\models \bot \Rightarrow \bot \not\in Res^*(N)$$
 (resolution is sound)
 $\Rightarrow \bot \not\in G_{\Sigma}(Res^*(N))$
 $\Rightarrow I_{G_{\Sigma}(Res^*(N))} \models G_{\Sigma}(Res^*(N))$ (Prt. 12 (BG90); Cor. 2)
 $\Rightarrow I_{G_{\Sigma}(Res^*(N))} \models Res^*(N)$ (Lemma 4)
 $\Rightarrow I_{G_{\Sigma}(Res^*(N))} \models N$ ($N \subseteq Res^*(N)$)

- p.17

The Theorem of Löwenheim-Skolem

Property 6 (Löwenheim-Skolem Theorem)

Let Σ be a countable signature and let S be a set of closed Σ -formulae. Then S is satisfiable iff S has a model over a countable universe.

Proof:

If both X and Σ are countable, then S can be at most countably infinite. Now generate, maintaining satisfiability, a set N of clauses from S. This extends Σ by at most countably many new Skolem functions to Σ' . As Σ' is countable, so is $T_{\Sigma'}$, the universe of Herbrand-interpretations over Σ' . Now apply Herbrand's Theorem (Property 5).

Refutational Completeness of General Resolution

Property 7

Let N be a set of general clauses where $Res(N) \subseteq N$. Then

$$N \models \bot$$
 iff $\bot \in N$.

Proof:

Let $Res(N) \subseteq N$.

By Corollary 2: $Res(G_{\Sigma}(N)) \subset G_{\Sigma}(N)$

$$N \models \bot \Leftrightarrow G_{\Sigma}(N) \models \bot$$
 (Lemmas 3 & 4; Property 5)
 $\Leftrightarrow \bot \in G_{\Sigma}(N)$ (prop. resol. is sound and complete)
 $\Leftrightarrow \bot \in N$

Compactness of First-Order Logic

Property 8 (Compactness Theorem for First-Order Logic)

Let Φ be a set of first-order formulae.

 Φ is unsatisfiable iff some finite subset $\Psi \subset \Phi$ is unsatisfiable.

Proof:

The " \Leftarrow " part is trivial. For the " \Rightarrow " part let Φ be unsatisfiable and let N be the set of clauses obtained by Skolemisation and CNF transformation of the formulae in Φ . Clearly $Res^*(N)$ is unsatisfiable. By Property 7, $\bot \in Res^*(N)$, and therefore $\bot \in Res^n(N)$ for some $n \in \mathbb{N}$. Consequently, \bot has a finite resolution proof Π of depth $\le n$. Choose Ψ as the subset of formulae in Φ such that the corresponding clauses contain the assumptions (leaves) of Π .

Lifting Lemma for Res

Lemma 9

Let C and D be variable-disjoint clauses. If

$$\begin{array}{ccc} C & D \\ \downarrow \sigma & \downarrow \rho \\ \hline \frac{C\sigma & D\rho}{C'} & \text{(propositional inference in } Res_{S}^{\succ} \text{)} \end{array}$$

and if $S(C\sigma) \simeq S(C)$, $S(D\rho) \simeq S(D)$ (that is, "corresponding" literals are selected), then there exist C'' and a substitution τ s.t.

$$\frac{C \quad D}{C''} \qquad \text{(inference in } Res_S^{\succ}\text{)}$$

$$\downarrow \quad \tau$$

$$C' = C''\tau$$

- p.21

Lifting Lemma for Res (cont'd)

· An analogous lifting lemma holds for factoring.

Saturation of General Clause Sets

Corollary 10

Let N be a set of general clauses saturated under Res_S^{\succ} , i.e. $Res_S^{\succ}(N) \subseteq N$. Then there exists a selection function S' such that $S|_N = S'|_N$ and $G_{\Sigma}(N)$ is also saturated, i.e.,

$$Res_{S'}^{\succ}(G_{\Sigma}(N)) \subseteq G_{\Sigma}(N).$$

Proof:

We first define the selection function S' such that S'(C) = S(C) for all clauses $C \in G_{\Sigma}(N) \cap N$. For $C \in G_{\Sigma}(N) \setminus N$ we choose a fixed but arbitrary clause $D \in N$ with $C \in G_{\Sigma}(D)$ and define S'(C) to be those occurrences of literals that are ground instances of the occurrences selected by S in D. Then proceed as in the proof of Corollary 2 using the above lifting lemma.

- p.2

Soundness and Refutational Completeness

Property 11

Let \succ be an atom ordering and S a selection function such that $Res_S^{\succ}(N) \subseteq N$. Then

$$N \models \bot$$
 iff $\bot \in N$

Proof:

The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider the propositional level: Construct a candidate model I_N^{\succ} as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_C and when their maximal atom occurs only once and positively. The result for general clauses follows using Corollary 10.

Summary

- Resolution for general, first-order clauses
- Refutational completeness, consequence of:
 - 1. refutational completeness of ground case
 - 2. lifting lemmas
 - 3. Herbrand's Theorem
- Löwenheim-Skolem Theorem
- Compactness of FOL
- lifting lemmas for ordered resolution with selection

COMP6012: Automated Reasoning II

- p.25

Optional material (unassessed)

Lexicographic Orderings

• Lexicographic orderings: Let (X_1, \succ_1) , (X_2, \succ_2) be well-founded orderings. Define their lexicographic combination

$$\succ = (\succ_1, \succ_2)_{lex}$$

as an ordering on $X_1 \times X_2$ such that

$$(x_1, x_2) \succ (y_1, y_2)$$
 iff (i) $x_1 \succ_1 y_1$, or else
(ii) $x_1 = y_1$ and $x_2 \succ_2 y_2$

(Analogously for more than two orderings.)

This again yields a well-founded ordering (proof below).

• **Notation:** \succ_{lex} for the lexicographic combination of (X, \succ) twice (in general n times). I.e. $\succ_{lex} = (\succ, \succ)_{lex}$.

Lexicographic Orderings: Examples

 Length-based ordering on words: For alphabets Σ with a well-founded ordering >_Σ, the relation >_¬, defined as

$$w \succ w'$$
 iff (i) $|w| > |w'|$ or
(ii) $|w| = |w'|$ and $w >_{\Sigma, lex} w'$,

is a well-founded ordering on Σ^* .

• Notation: $>_{\Sigma,lex} = (>_{\Sigma})_{lex}$.

- p.21

- p.28

Lexicographic Combinations of Well-Founded Orderings

Lemma 12

 (X_i, \succ_i) is well-founded for $i \in \{1, 2\}$ iff $(X_1 \times X_2, \succ)$ with $\succ = (\succ_1, \succ_2)_{lex}$ is well-founded.

Proof:

- (i) " \Rightarrow ": Suppose $(X_1 \times X_2, \succ)$ is not well-founded. Then there is an infinite sequence $(a_0, b_0) \succ (a_1, b_1) \succ (a_2, b_2) \succ \ldots$. Let $A = \{a_i \mid i \geq 0\} \subseteq X_1$. Since (X_1, \succ_1) is well-founded, A has a minimal element a_n . But then $B = \{b_i \mid i \geq n\} \subseteq X_2$ cannot have a minimal element, contradicting the well-foundedness of (X_2, \succ_2) .
- (ii) "←": obvious (exercise).

- p.29

Reduction orderings

- A strict ordering ≻ is a reduction ordering iff
- (i) \succ is well-founded
- (ii) \succ is stable under substitutions, i.e. $s \succ t$ implies $s\sigma \succ t\sigma$ for all terms s, t and substitutions σ
- (iii) \succ is compatible with contexts, i.e. $s \succ t$ implies $u[s] \succ u[t]$ for all terms s, t and contexts u
- Examples:
 - For (ii): $f(x) \succ g(x)$ implies $f(a) \succ g(a)$.
 - ► For (iii): a > b implies f(a) > f(a).

Lexicographic Path Orderings

- Let Σ be a finite signature and let X be a countably infinite set of variables.
- Let > be a strict ordering (precedence) on the set of predicate and functions symbols in Σ.
- The lexicographic path ordering ≻_{lpo} on the set of terms (and atoms) over Σ and X is an ordering induced by ≻, satisfying:
 s ≻_{lpo} t iff
 - 1. $t \in \text{var}(s)$ and $t \neq s$, or
 - 2. $s = f(s_1, ..., s_m), t = g(t_1, ..., t_n),$ and
 - (a) $s_i \succeq_{\mathsf{lpo}} t$ for some i, or
 - (b) $f \succ g$ and $s \succ_{lpo} t_j$ for all j, or
 - (c) f = g, $s \succ_{lpo} t_j$ for all j, and $(s_1, \ldots, s_m) (\succ_{lpo})_{lex} (t_1, \ldots, t_n)$.

Lexicographic Path Orderings (cont'd)

- Definition: $s \succeq_{lpo} t$ iff $s \succ_{lpo} t$ or s = t
- Examples:
 - $\vdash f(x) \succ_{\mathsf{lpo}} x$
 - if t is a subterm of s then $s \succ_{lpo} t$
 - $\vdash f(a, b, g(c), a) \succ_{lpo} f(a, b, c, g(b))$
 - ► If t can be homomorphically embedded into s and $s \neq t$ then $s \succ_{\mathsf{lpo}} t$ E.g.

$$h(f(g(a), f(b, y))) \succ_{lpo} f(g(a), y)$$

Properties of LPOs

Lemma 13

 $s \succ_{\mathsf{lpo}} t \mathsf{ implies } \mathsf{var}(s) \supseteq \mathsf{var}(t).$

Proof:

By induction on |s| + |t| and case analysis.

- p.33

Properties of LPOs (cont'd)

Property 14

 \succ_{lpo} is a reduction ordering on the set of terms (and atoms) over Σ and X.

Proof:

Show transitivity, stability under substitutions, compatibility contexts, and irreflexivity, usually by induction on the sum of the term sizes and case analysis.

Details: Baader and Nipkow, page 119-120.

Properties of LPOs (cont'd)

Property 15

If the precedence \succ is total, then the lexicographic path ordering \succ_{lpo} is total on ground terms (and ground atoms), i.e. for all ground terms (or atoms) s, t of the following is true: $s \succ_{\mathsf{lpo}} t$ or $t \succ_{\mathsf{lpo}} s$ or s = t.

Proof:

By induction on |s| + |t| and case analysis.

Variations of the LPO

There are several possibilities to compare subterms in 2.(c):

- compare list of subterms lexicographically left-to-right ("lexicographic path ordering (lpo)", Kamin and Lvy)
- compare list of subterms lexicographically right-to-left (or according to some permutation π)
- compare multiset of subterms using the multiset extension ("multiset path ordering (mpo)", Dershowitz)
- to each function symbol f/n associate a status ∈ {mul} ∪ { lex_π | π : {1,..., n} → {1,..., n} } and compare according to that status ("recursive path ordering (rpo) with status")

- p.35