Craig-Interpolation (cont'd)

Proof of Property 17:

Transform F and $\neg G$ into CNF.

Let N and M, resp., denote the resulting clause sets.

Choose any atom ordering \succ for which the prop. variables that occur in F but not in G are maximal.

Saturate N wrt. Res_S^{\leftarrow} (with empty selection function S) to get N^* . Let

 $N' = N^* \setminus \{C \mid C \text{ contains a symbol in } F \text{ but not in } G\}.$

I.e. $C \in N'$ iff $C \in N^*$ and C contains only symbols in G.

Let $H = \bigwedge N'$. Then, clearly $F \models H$. (Why?)

To see that $H \models G$, take $N^* \cup M$ and saturate wrt. Res_S^{\succ} .

This derives \perp , but no inferences are performed on clauses in $N^* \setminus N'$.

This implies $N' \cup M \models \bot$ and therefore $H \models G$.

- p.105

Hyperresolution

- There are many variants of resolution.
 (Refer to Bachmair and Ganzinger (2001), "Resolution Theorem Proving", for further reading.)
- One well-known example is hyperresolution (Robinson 1965):
 - ► Assume that several negative literals are selected in a clause *D*.

If we perform an inference with D, then one of the selected literals is eliminated.

- ► Suppose that the remaining selected literals of *D* are again selected in the conclusion.
- ► Then we will eliminate the remaining selected literals one by one by further resolution steps.

Hyperresolution (cont'd)

- Hyperresolution replaces these successive steps by a single inference.
- As for Res₅, the calculus is parameterised by an atom ordering > and a selection function S.
- But *S* is the 'maximal' selection function, i.e. selects all negative literals in a clause.

- p.10

Hyperresolution (cont'd)

• Hyperresolution calculus *HRes*

$$\frac{C_1 \vee A_1 \quad \dots \quad C_n \vee A_n \quad \neg B_1 \vee \dots \vee \neg B_n \vee D}{(C_1 \vee \dots \vee C_n \vee D)\sigma}$$

provided σ is the mgu s.t. $A_1\sigma=B_1\sigma$, ..., $A_n\sigma=B_n\sigma$, and

- (i) $A_i \sigma$ strictly maximal in $C_i \sigma$, $1 \le i \le n$;
- (ii) nothing is selected in C_i (i.e. C_i is positive);
- (iii) the indicated $\neg B_i$ are exactly the ones selected by S, and D is positive.
- Similarly as for resolution, hyperresolution has to be complemented by a factoring rule. I.e. the ordered positive factoring rule from before.