Orderings. Let (X, \succ) be an ordering. The multi-set extension ordering \succ_{mul} on (finite) multi-sets over X is defined by

$$S_1 \succ_{\text{mul}} S_2 \text{ iff } S_1 \neq S_2 \text{ and}$$

 $\forall x \in X, \text{ if } S_2(x) > S_1(x) \text{ then}$
 $\exists y \in X: y \succ x \text{ and } S_1(y) > S_2(y)$

Suppose \succ is a total and well-founded ordering on ground atoms. \succ_L denotes the *ordering on ground literals* and is defined by:

$$[\neg] A \succ_L [\neg] B, \text{ if } A \succ_B \\ \neg A \succ_L A$$

 \succ_C denotes the *ordering on ground clauses* and is defined by the multi-set extension of \succ_L , i.e. $\succ_C = (\succ_L)_{\text{mul}}$.

Maximal literals. Let \succ be a total and well-founded ordering on ground atoms.

A ground literal L is called [strictly] maximal wrt. a ground clause C iff for all L' in C: $L \succeq L'$ [$L \succ L'$].

A non-ground literal L is [strictly] maximal wrt. a (ground or non-ground) clause C iff there exists a ground substitution σ such that for all L' in C: $L\sigma \succeq L'\sigma$ [$L\sigma \succ L'\sigma$].

Herbrand models. The *Herbrand universe* (over Σ), denoted T_{Σ} , is the set of all ground terms over Σ .

A Herbrand interpretation (over Σ), denoted I, is a set of ground atoms over Σ . Truth in I of ground formulae is defined inductively by:

$$I \models \top \qquad \qquad I \not\models \bot$$

$$I \models A \text{ iff } A \in I, \text{ for any ground atom } A$$

$$I \models \neg F \text{ iff } I \not\models F$$

$$I \models F \land G \text{ iff } I \models F \text{ and } I \models G$$

$$I \models F \lor G \text{ iff } I \models F \text{ or } I \models G$$

Truth in I of any quantifier-free formula F with free variables x_1, \ldots, x_n is defined by:

$$I \models F(x_1, \ldots, x_n)$$
 iff $I \models F(t_1, \ldots, t_n)$, for every $t_i \in T_{\Sigma}$

Truth in I of any set N of clauses is defined by:

$$I \models N$$
 iff $I \models C$, for each $C \in N$

Construction of candidate models. Let N, \succ be given.

For all ground clauses C over the given signature, the sets I_C and Δ_C are inductively defined with respect to the clause ordering \succ by:

$$I_C := \bigcup_{C \succ D} \Delta_D$$

$$\Delta_C := \begin{cases} \{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C' \\ & \text{and } I_C \not\models C \\ \emptyset, & \text{otherwise} \end{cases}$$

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as

$$I_N^{\succ} := \bigcup_{C \in N} \Delta_C.$$

We also simply write I_N , or I, for I_N^{\succ} , if \succ is either irrelevant or known from the context.

Ordered resolution with selection calculus Res_S^{\succ} . Let \succ be an atom ordering and S a selection function.

(Ordered resolution with selection rule)
$$\frac{C \vee A \quad \neg B \vee D}{(C \vee D)\sigma}$$

provided $\sigma = \operatorname{mgu}(A, B)$ and

- (i) $A\sigma$ strictly maximal wrt. $C\sigma$;
- (ii) nothing is selected in C by S;
- (iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \lor D$ and $\neg B \sigma$ is maximal wrt. $D\sigma$.

(Ordered factoring rule)
$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

provided $\sigma = \text{mgu}(A, B)$ and

- (i) $A\sigma$ is maximal wrt. $C\sigma$ and
- (ii) nothing is selected in C.

Hyperresolution calculus HRes.

(Ordered hyperresolution rule)
$$\frac{C_1 \vee A_1 \quad \dots \quad C_n \vee A_n \quad \neg B_1 \vee \dots \vee \neg B_n \vee D}{(C_1 \vee \dots \vee C_n \vee D)\sigma}$$

provided σ is the mgu s.t. $A_1\sigma = B_1\sigma, \ldots, A_n\sigma = B_n\sigma$, and

- (i) $A_i \sigma$ strictly maximal in $C_i \sigma$, $1 \le i \le n$;
- (ii) nothing is selected in C_i (i.e. C_i is positive);
- (iii) the indicated $\neg B_i$ are exactly the ones selected by S, and D is positive.

(Ordered factoring rule)
$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

provided $\sigma = \text{mgu}(A, B)$ and

- (i) $A\sigma$ is maximal wrt. $C\sigma$ and
- (ii) nothing is selected in C.

Redundancy. Let N be a set of ground clauses and C a ground clause. C is called *redundant* wrt. N, if there exist $C_1, \ldots, C_n \in N$, $n \geq 0$, such that

- (i) all $C_i \prec C$, and
- (ii) $C_1, \ldots, C_n \models C$.

A general clause C is called *redundant* wrt. N, if all ground instances $C\sigma$ of C are redundant wrt. $G_{\Sigma}(N)$.

N is called saturated up to redundancy (wrt. Res_S^{\succ}) iff every conclusion of an Res_S^{\succ} -inference with non-redundant clauses in N is in N or is redundant (i.e.

$$Res_S^{\succ}(N \setminus Red(N)) \subseteq N \cup Red(N),$$

where Red(N) denotes the set of clauses redundant wrt. N).