Previously ...

- propositional clause logic: atoms, literals (positive & negative), clauses (= multi-sets)
- calculus Res: resolution & positive factoring
- conversion to clause form:
 - optimisation using structural transformation

- p.42

Ground Expressions, Ground Instances

- Ground terms are terms with no occurrences of variables.
- Ground atoms are atoms with no occurrences of variables.
- Ground literals, ground clauses, ground formulae are defined similarly.
- A ground instance of an expression (atom, literal, clause, formula) is obtained by uniformly instantiating the variables in it with ground terms.

Herbrand Universe

- Notation: Let ∑ denote our language.
- We assume there is at least one constant in the language Σ .
- The Herbrand universe (over Σ), denoted T_Σ, is the set of all ground terms over Σ.
- **Example:** Suppose the language has one binary function symbol f and two constants a and b. The following are in T_{Σ} :

$$a, b, f(a, a), f(a, b), f(b, a), f(b, b), f(a, f(a, a)), \dots$$

• If Σ contains non-constant function symbols then T_{Σ} is infinite.

Exercise

• Suppose Σ is the language with one unary function symbol f and one constant a.

Write down the elements of the Herbrand universe T_{Σ} .

• Suppose Σ is the language with one unary function symbol f and one constant a.

Write down the elements of the Herbrand universe T_{Σ} .

$$\mathsf{T}_{\Sigma} = \{a, f(a), f(f(a)), \dots, f^n(a), \dots\}$$

- p.45

Herbrand Interpretations

- A Herbrand interpretation (over Σ), denoted I, is a set of ground atoms over Σ .
- Truth in *I* of ground formulae is defined inductively by:

$$I \models A \text{ iff } A \in I, \text{ for any ground atom } A$$

$$I \models \top \qquad \qquad I \not\models \bot$$

$$I \models \neg F \text{ iff } I \not\models F$$

$$I \models F \land G \text{ iff } I \models F \text{ and } I \models G$$

$$I \models F \lor G \text{ iff } I \models F \text{ or } I \models G$$

Note: A ground atom A is true in I if A ∈ I and false otherwise.
 This implies:

$$I \models \neg A \text{ iff } I \not\models A \text{ iff } A \not\in I$$

Herbrand Interpretations (cont'd)

• Truth in I of any quantifier-free formula F with free variables x_1, \ldots, x_n is defined by:

$$I \models F(x_1, \ldots, x_n)$$
 iff $I \models F(t_1, \ldots, t_n)$, for every $t_i \in \mathsf{T}_{\Sigma}$

• Truth in *I* of any set *N* of clauses/formulae is defined by:

$$I \models N$$
 iff $I \models C$, for each $C \in N$

- We say a formula F (or a set N of formulae) is satisfiable if there is an interpretation I such that $I \models F$ (or $I \models N$).
- A Herbrand interpretation I is called a Herbrand model of F
 (N), if I ⊨ F (I ⊨ N).

Relation to standard interpretations (optional)

- In a Herbrand interpretation values are fixed to be ground terms and functions are fixed to be the (Skolem) functions in Σ .
- I is an interpretation \mathcal{M} where the values are given by: constant a: $a^{\mathcal{M},s} = a$ function f: $(f(t_1, \ldots, t_n))^{\mathcal{M},s} = f(t_1^{\mathcal{M},s}, \ldots, t_n^{\mathcal{M},s})$
- Only predicate symbols p may be freely interpreted as relations $p^{\mathcal{M}} \subseteq \mathsf{T}^n_{\underline{r}}$.

Property 6

Every Herbrand interpretation (set of ground atoms) I uniquely determines an interpretation \mathcal{M} via

$$(s_1,\ldots,s_n)\in p^{\mathcal{M}}$$
 iff $p(s_1,\ldots,s_n)\in I$

- p.4

• Suppose Σ is the language with one unary function symbol f, one constant a and one predicate symbol p.

Which of the following are Herbrand interpretations over Σ ?

- 1. $I_1 = \{p(a)\}$
- 2. $I_2 = \{p(a), p(f(a))\}$
- 3. $I_3 = \{p(a), \neg p(f(a))\}$
- For I_2 determine whether the following is true?
 - 1. $I_2 \models p(a)$
 - 2. $I_2 \models \neg p(a)$
 - 3. $I_2 \models \neg p(f(a))$
 - 4. $I_2 \models p(a) \land p(f(a))$
 - 5. $I_2 \models p(x)$

Exercise

• Suppose Σ is the language with one unary function symbol f, one constant a and one predicate symbol p.

Which of the following are Herbrand interpretations over Σ ?

- 1. $I_1 = \{p(a)\}$ yes
- 2. $I_2 = \{p(a), p(f(a))\}\$ yes
- 3. $I_3 = \{p(a), \neg p(f(a))\}$ no; only pos. atoms can belong to I
- For I_2 determine whether the following is true?
 - 1. $I_2 \models p(a)$
 - 2. $I_2 \models \neg p(a)$
 - 3. $I_2 \models \neg p(f(a))$
 - 4. $I_2 \models p(a) \land p(f(a))$
 - 5. $I_2 \models p(x)$

Exercise

• Suppose Σ is the language with one unary function symbol f, one constant a and one predicate symbol p.

Which of the following are Herbrand interpretations over Σ ?

- 1. $I_1 = \{p(a)\}$ yes
- 2. $I_2 = \{p(a), p(f(a))\}$ yes
- 3. $I_3 = \{p(a), \neg p(f(a))\}$ no; only pos. atoms can belong to I
- For I_2 determine whether the following is true?
 - 1. $l_2 \models p(a)$ yes
 - 2. $I_2 \models \neg p(a)$ no
 - 3. $I_2 \models \neg p(f(a))$ no
 - 4. $I_2 \models p(a) \land p(f(a))$ yes
 - 5. $l_2 \models p(x)$ no

Examples of Herbrand Interpretations

- Suppose $\Sigma_{\mathbb{N}}$ has constant 1, binary function +, unary predicate symbol p.
- Notation: n + m instead of +(n, m)
- Herbrand interpretation over $\Sigma_{\mathbb{N}}$:

$$I = \{ p(1),$$
 $p(1+1),$
 $p(1+1+1),$
 $p(1+1+1+1),$
 $\dots \}$

• Is model of: p(x) representing that x is a natural number Not model of: p(x) representing that x is an odd number

Examples of Herbrand Interpretations (cont'd)

- Suppose Σ is any signature. Let I be a Herbrand interpretation over Σ .
 - ▶ $I \models r(x,x)$ iff $r(t,t) \in I$ for every ground term t in T_{Σ} .
 - ► $I \models \neg r(x, x)$ iff $r(t, t) \not\in I$ for every ground term t in T_{Σ} .
 - ► $I \models \neg r(x, y) \lor r(y, x)$ iff when $r(s, t) \in I$ then $r(t, s) \in I$, for any ground terms $s, t \in T_{\Sigma}$.
 - ► $I \models \neg r(x, y) \lor \neg r(y, z) \lor r(x, z)$ iff when $r(s, t) \in I$ and $r(t, u) \in I$ then $r(s, u) \in I$, for any ground terms $s, t, u \in T_{\Sigma}$.

- p.51

Existence of Herbrand Models

• Let $G_{\Sigma}(N)$ denote the set of all ground instances of the clauses in N over the language Σ . I.e.

 $G_{\Sigma}(N) = \{ C\sigma \mid C \in N, \sigma : X \to T_{\Sigma} \text{ a ground substitution} \},$ where X denotes the set of variables in the language.

Property 7 (Herbrand)

Let N be a set of Σ -clauses.

N satisfiable iff N has a Herbrand model (over Σ) iff $G_{\Sigma}(N)$ has a Herbrand model (over Σ)

(See optional, unassessed material – on completeness of general resolution – from course website for a proof.)

Examples

Consider

$$N = \{p(x), q(f(y)) \lor r(y)\}$$

$$T_{\Sigma} = \{a, f(a), f(f(a)), \ldots\}$$

- p(a) and p(f(a)) are both ground instances of the first clause p(x) in N.
- **Exercise**: Give examples of ground instances of the second clause in *N*.

Example of a set of ground instances $G_{\Sigma}(N)$

 \bullet For $\Sigma_{\mathbb{N}}$ one obtains for

$$N = \{p(1), \neg p(x) \lor p(x+1)\}$$

the following ground instances:

$$G_{\Sigma}(N) = \{ p(1), \ \ \, \neg p(1) \lor p(1+1), \ \ \, \neg p(1+1) \lor p(1+1+1), \ \ \, \neg p(1+1+1) \lor p(1+1+1+1), \ \ \, \cdots \ \ \, \}$$

- Write down a Herbrand model of $G_{\Sigma}(N)$ (i.e. a Herbrand interpretation in which all clauses of $G_{\Sigma}(N)$ are true).
- Is N satisfiable?

- p.55

Exercise

• Write down a Herbrand model of $G_{\Sigma}(N)$ (i.e. a Herbrand interpretation in which all clauses of $G_{\Sigma}(N)$ are true).

$$I = \{p(1), p(1+1), p(1+1+1), \ldots\}$$

• Is N satisfiable?

Exercise

• Write down a Herbrand model of $G_{\Sigma}(N)$ (i.e. a Herbrand interpretation in which all clauses of $G_{\Sigma}(N)$ are true).

$$I = \{p(1), p(1+1), p(1+1+1), \ldots\}$$

Is N satisfiable? Answer: Yes. Why?
 By Herbrand's theorem.
 In fact, I is also a model of N.

Summary

- ground expressions, ground instances
- Herbrand universe
- Herbrand interpretation, Herbrand model
- satisfiability in *I*: ⊨
- Herbrand's Theorem

COMP60121: Automated Reasoning II

Lecture 4

Previously ...

- ground terms, ground atoms, ground literals, ground clauses
- Herbrand universe = set of ground terms
- Herbrand interpretation I = set of ground atoms
 - For atoms: $A \in I$ iff $I \models A$ $A \not\in I$ iff $I \not\models A$ iff $I \models \neg A$
- Herbrand's Theorem

Recap: Soundness and Completeness

- N ⊢_{Cal} C means there exists a Cal-derivation of C from N.
 N ⊢_{Res} C means there exists a Res-derivation of C from N.
 N ⊨ C means any model which satisfies N also satisfies C.
 C is true in each model of N; C follows semantically from N
 N ⊨ ⊥ means N is unsatisfiable, i.e. N has no model.
- Cal is said to be sound iff

$$N \vdash_{Cal} C \Rightarrow N \models C$$
.

• Cal is said to be refutationally complete iff

$$N \models \bot \Rightarrow N \vdash_{Cal} \bot$$
.

- In general, a calculus *Cal* is complete iff $N \models F \Rightarrow N \vdash_{Cal} F$.
- We prove that Res is sound and refutationally complete.

Recap: Sound Inference Rule

• An inference rule

$$\frac{F_1 \ldots F_n}{F}$$

is called sound, if $F_1, \ldots, F_n \models F$, i.e., if F is a semantic/logical consequence of $F_1 \land \ldots \land F_n$.

– p.58

Soundness of Resolution

Property 8

The propositional resolution calculus, *Res*, (resolution on ground clauses) is sound.

Proof: We have to show: $N \vdash_{Res} C \Rightarrow N \models C$, It suffices to show that every rule is sound, i.e. for every rule $\frac{C_1 \dots C_n}{D}$ we have $C_1, \dots, C_n \models D$. For resolution, assume $I \models C \lor A$, $I \models \neg A \lor D$ and show $I \models C \lor D$.

(a) Case $I \models A$: Then $I \models D$, for else $I \not\models \neg A \lor D$. Hence $I \models C \lor D$. (b) Case $I \not\models A$: Then $I \models \neg A$. Since $I \models C \lor A$, $I \models C$ and consequently $I \models C \lor D$.

For factoring, assume $I \models C \lor A \lor A$ and show $I \models C \lor A$. Exercise.

- p.61

Refutational Completeness of Resolution

- How to show refutational completeness of ground resolution?
- We have to show: $N \models \bot \Rightarrow N \vdash_{Res} \bot$, or equivalently: $N \nvdash_{Res} \bot \Rightarrow N$ has a model.
- Idea:
 - ► Suppose that we have computed possibly infinitely many inferences from N (and not derived \bot).
 - ► Order the clauses in the derivation according to some appropriate ordering, inspect the clauses in ascending order, and construct a series of Herbrand interpretations.
- ► The limit Herbrand interpretation can be shown to be a model of *N*.

Defining Clause Orderings

- We assume that

 is any fixed ordering on ground atoms that is total and well-founded. (There exist many such orderings, e.g., the length-based ordering on atoms when these are viewed as words over a suitable alphabet.)
- 2. Extend \succ to an ordering \succ_{L} on ground literals:

$$[\neg]A \succ_L [\neg]B$$
, if $A \succ B$
 $\neg A \succ_I A$

(These are 5 conditions!)

3. Extend \succ_L to an ordering \succ_C on ground clauses: Let $\succ_C = (\succ_L)_{\text{mul}}$, the multi-set extension of \succ_L .

Notation: \succ also for \succ_L and \succ_C .

Example

- Suppose $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$.
- Then:

$$\neg A_5 \succ A_5 \succ \neg A_4 \succ A_4 \succ \ldots \succ \neg A_0 \succ A_0$$

• And:

$$A_0 \lor A_1$$

$$\prec A_1 \lor A_2$$

$$\prec \neg A_1 \lor A_2$$

$$\prec \neg A_1 \lor A_4 \lor A_3$$

$$\prec \neg A_1 \lor \neg A_4 \lor A_3$$

$$\prec \neg A_5 \lor A_5$$

.

- Suppose $A_4 \succ A_3 \succ A_2 \succ A_1$
- How are these clauses ordered by \succ_C ?
 - 1. $\neg A_3 \lor A_4$
 - 2. $A_3 \vee A_1 \vee A_1$
 - 3. $\neg A_4 \lor A_2$
 - 4. $A_3 \vee A_1$

- p.65

Exercise

- Suppose $A_4 \succ A_3 \succ A_2 \succ A_1$
- How are these clauses ordered by \succ_C ?
 - 1. $\neg A_3 \lor A_4$
 - 2. $A_3 \vee A_1 \vee A_1$
 - 3. $\neg A_4 \lor A_2$
 - 4. $A_3 \vee A_1$
- Ordering of literals:

 $\neg A_4 \succ_L A_4 \succ_L \neg A_3 \succ_L A_3 \succ_L \neg A_2 \succ_L A_2 \succ_L \neg A_1 \succ_L A_1$

Exercise

- Suppose $A_4 \succ A_3 \succ A_2 \succ A_1$
- How are these clauses ordered by \succ_C ?
 - 1. $\neg A_3 \lor A_4$
 - 2. $A_3 \vee A_1 \vee A_1$
 - 3. $\neg A_4 \lor A_2$
 - 4. $A_3 \vee A_1$
- Ordering of literals:

$$\neg A_4 \succ_I A_4 \succ_I \neg A_3 \succ_I A_3 \succ_I \neg A_2 \succ_I A_2 \succ_I \neg A_1 \succ_I A_1$$

• Ordering of clauses: $3 \succ_C 1 \succ_C 2 \succ_C 4$ $(4 \prec_C 2 \prec_C 1 \prec_C 3)$

- p.6!

Properties of Clause Orderings

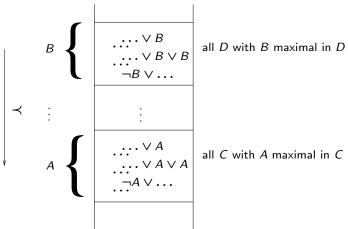
Property 9

- 1. The orderings $(\succ_L \text{ and } \succ_C)$ on (ground) literals and clauses are total and well-founded.
- 2. Let C and D be clauses with A an occurrence of a maximal atom in C and B an occurrence of a maximal atom in D.
 - (i) If $A \succ B$ then $C \succ D$.
 - (ii) If A = B and A occurs negatively in C but only positively in D, then $C \succ D$.

Note: in 2. A and B may be negated or unnegated occurrences.

Stratified Structure of Clause Sets

Let $A \succ B$. Clause sets are then stratified in this form:



Clauses in A-cluster are larger than clauses in B-cluster

- p.67

Method of Computing All Possible Conclusions

• Define the operators Res, Resⁿ, Res*:

$$Res(N) = \{C \mid C \text{ is the conclusion of applying a rule in } Res\}$$

to premises in $N\}$

Define *Resⁿ* inductively by:

$$Res^{0}(N) = N$$
 $Res^{n+1}(N) = Res^{n}(N) \cup Res(Res^{n}(N)), \text{ for } n \ge 0$
 $Res^{*}(N) = \bigcup_{n>0} Res^{n}(N)$

• Res(N) is the set of 'immediate' resolvents and factors of N (all premises are in N). $Res^*(N)$ is the set of all possible resolvents and factors of N.

Saturation of Clause Sets under Res

- *N* is called saturated (wrt. resolution), if $Res(N) \subseteq N$.
- Method of level saturation (on the previous slide) computes the saturation of a set N as the closure of N which is given by Res*(N).

Property 10

- (i) $Res^*(N)$ is saturated.
- (ii) Res is (sound and) refutationally complete iff for each set N of ground clauses:

$$N \models \bot$$
 iff $\bot \in Res^*(N)$

• Intuition: $\bot \in Res^*(N)$ implies $N \vdash_{Res} \bot$

- p.6

Summary

- soundness and refutational completeness
- sound rule
- soundness of Res
- lifting ordering on ground atoms to ground literals and to ground clauses
- properties of \succ_L and \succ_C
- properties of ordered sets of clauses, stratification
- saturated clause set, level saturation

COMP60121: Automated Reasoning II

Lecture 5

Previously ...

- soundness and refutational completeness
- sound rule
- soundness of *Res*
- literal ordering, clause ordering
- properties of ordered clause sets, stratification
- saturated clause set, level saturation

Construction of Herbrand Interpretations

• Our aim is to show the equivalence, where *N* is any set of ground clauses:

$$N \models \bot$$
 iff $\bot \in Res^*(N)$

- The soundness result (Property 8) implies the "←" direction.
- We now show the "⇒" direction (i.e. refutational completeness), by showing

If
$$\bot \not\in Res^*(N)$$
, then N has a model.

- **Given**: set N of ground clauses, atom ordering \succ .
- Wanted: Herbrand interpretation / such that
 - ► "many" clauses from N are true in I, and
 - ▶ $I \models N$, if N is saturated and $\bot \not\in N$.

- p.73

Example

Let $A_5 \succ A_4 \succ A_3 \succ A_2 \succ A_1 \succ A_0$ (strictly maximal literals in <u>red</u>)

	clauses C in N	I _C	$\Delta_{\mathcal{C}}$	Remarks
1	$\neg A_0$	Ø	Ø	true in I_C
2	$A_0 \vee \underline{A_1}$	Ø	$\{A_1\}$	A_1 str. maximal
3	$A_1 \vee \underline{A_2}$	$\{A_1\}$	Ø	true in I_C
4	$\neg A_1 \lor \underline{A_2}$	$\{A_1\}$	$\{A_2\}$	A_2 str. maximal
5	$\neg A_1 \vee \underline{A_4} \vee A_3 \vee A_0$	$\{A_1,A_2\}$	$\{A_4\}$	A_4 str. maximal
6	$\neg A_1 \lor \underline{\neg A_4} \lor A_3$	$\{A_1, A_2, A_4\}$	Ø	A_3 not str. max.
				min. exception
7	$\neg A_1 \lor \underline{A_5}$	$\{A_1, A_2, A_4\}$	$\{A_5\}$	A_5 str. maximal

 $I = \{A_1, A_2, A_4, A_5\}$ is not a model of the clause set because there exists an exception (unfulfilled) clause, clause 6.

By definition, an exception clause for I is a clause that is not true in I.

Main Ideas of the Construction

- Approximate (!) description: Define *I* inductively by:
 - ► Starting with a minimal clause *C* in *N*. (Since in the ground case the ordering is total, there is a smallest clause and we start in fact with this clause.)
 - ► Consider the largest atom in C and attempt to define (in a certain way) $I_C \cup \Delta_C$ (!) as the minimal extension of the partial interpretation constructed so far (I_C) so that C becomes true.
 - ▶ Iterate for $N \setminus \{C\}$, and so forth.
- I.e. clauses are considered in the order given by \prec .
- When considering C, one already has a partial interpretation I_C available (initially $I_C = \emptyset$).

- p.75

Main Ideas of the Construction (cont'd)

- If C is true in the partial interpretation I_C , nothing is done $(\Delta_C = \emptyset)$.
- If C is false, change I_C such that C becomes true.
- Changes should, however, be monotone. One never deletes anything from I_C and the truth value of any clause smaller than C should be maintained the way it was in I_C.
- ullet Hence, one chooses $\Delta_{\mathcal{C}} = \{A\}$ iff \mathcal{C} is false in $I_{\mathcal{C}}$, and when both
 - (i) A occurs positively in C, and
- (ii) this occurrence of A in C is strictly maximal (i.e. largest) in the ordering on literals.
- Note: (i) \Rightarrow adding A will make C become true.
 - (ii) ⇒ changing the truth value of A has no effect on smaller clauses.

Resolution Reduces Exceptions

$$\frac{\neg A_1 \lor \underline{A_4} \lor A_3 \lor A_0 \qquad \neg A_1 \lor \underline{\neg A_4} \lor A_3}{\neg A_1 \lor \neg A_1 \lor A_3 \lor A_3 \lor A_0}$$

Construction of I for the extended clause set:

clauses <i>C</i>	I _C	$\Delta_{\mathcal{C}}$	Remarks
$\neg A_0$	Ø	Ø	
$A_0 \vee \underline{A_1}$	Ø	$\{A_1\}$	
$A_1 \vee \underline{A_2}$	$\{A_1\}$	Ø	
$\neg A_1 \lor \underline{A_2}$	$\{A_1\}$	$\{A_2\}$	
$\neg A_1 \lor \neg A_1 \lor \underline{A_3} \lor \underline{A_3} \lor A_0$	$\{A_1, A_2\}$	Ø	A ₃ occurs twice
			min. exception
$\neg A_1 \lor \underline{A_4} \lor A_3 \lor A_0$	$\{A_1, A_2\}$	$\{A_4\}$	
$\neg A_1 \lor \underline{\neg A_4} \lor A_3$	$\{A_1, A_2, A_4\}$	Ø	exception
$\neg A_1 \lor \underline{A_5}$	${A_1, A_2, A_4}$	$\{A_5\}$	

The same I, but smaller exception, hence some progress was made.

Factoring Reduces Exceptions

$$\frac{\neg A_1 \lor \neg A_1 \lor \underline{A_3} \lor \underline{A_3} \lor A_0}{\neg A_1 \lor \neg A_1 \lor A_3 \lor A_0}$$

Construction of I for the extended clause set:

clauses C	I _C	$\Delta_{\mathcal{C}}$	Remarks
$\neg A_0$	Ø	Ø	
$A_0 \vee \underline{A_1}$	Ø	$\{A_1\}$	
$A_1 \vee \underline{A_2}$	$\{A_1\}$	Ø	
$\neg A_1 \lor \underline{A_2}$	$\{A_1\}$	$\{A_2\}$	
$\neg A_1 \lor \neg A_1 \lor \underline{A_3} \lor A_0$	$\{A_1, A_2\}$	${A_3}$	
$\neg A_1 \lor \neg A_1 \lor \underline{A_3} \lor \underline{A_3} \lor A_0$	$\{A_1, A_2, A_3\}$	Ø	true in I_C
$\neg A_1 \lor \underline{A_4} \lor A_3 \lor A_0$	$\{A_1, A_2, A_3\}$	Ø	
$\neg A_1 \lor \underline{\neg A_4} \lor A_3$	$\{A_1, A_2, A_3\}$	Ø	true in I_C
$\neg A_3 \lor \underline{A_5}$	${A_1, A_2, A_3}$	$\{A_5\}$	

The resulting $I = \{A_1, A_2, A_3, A_5\}$ is a model of the clause set.

Construction of Candidate Models Formally

• Let N, \succ be given. Guided by \succ , we define sets I_C and Δ_C for all ground clauses C over the given signature inductively by:

$$I_C := \bigcup_{C \succ D} \Delta_D$$

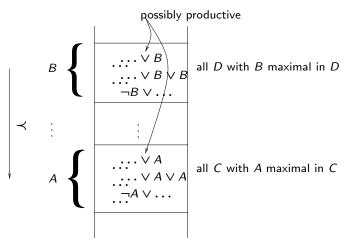
$$\Delta_C := \begin{cases} \{A\}, & \text{if } C \in N, \quad C = C' \lor A, \\ & A \succ C' \text{ and } I_C \not\models C \end{cases}$$
 $\emptyset, \quad \text{otherwise}$

- We say, C produces A, or just C is productive, if $\Delta_C = \{A\}$.
- The candidate model for N (wrt. \succ) is given as $I_N^{\succ} := \bigcup_{C \in N} \Delta_C$.
- We also simply write I_N, or I, for I_N if

 is either irrelevant or known from the context.

Structure of (N, \succ)

Let $A \succ B$; producing a new atom does not affect smaller clauses.



The smallest clauses in each cluster are possibly productive; but not necessarily (particularly if they are already true in I_C).

Some Properties of the Construction

Property 11

- (i) $C = \neg A \lor C' \implies \text{no } D \text{ s.t. } D \succeq C \text{ produces } A.$
- (ii) C productive $\Rightarrow I_C \cup \Delta_C \models C$ and $I_N \models C$.
- (iii) Let $D' \succ D \succ C$. Then

$$I_D \cup \Delta_D \models C \Rightarrow I_{D'} \cup \Delta_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $B \succ A$, where B and A are maximal atoms in D and C, respectively, then

$$I_D \cup \Delta_D \not\models C \Rightarrow I_{D'} \cup \Delta_{D'} \not\models C$$
 and $I_N \not\models C$.

Some Properties of the Construction (cont'd)

(iv) Let $D' \succ D \succ C$. Then

$$I_D \models C \Rightarrow I_{D'} \models C \text{ and } I_N \models C.$$

If, in addition, $C \in N$ or $B \succ A$, where B and A are maximal atoms in D and C, respectively, then

$$I_D \not\models C \Rightarrow I_{D'} \not\models C \text{ and } I_N \not\models C.$$

(v) $C = C' \vee A$ produces $A \Rightarrow I_N \not\models C'$.

. .

Model Existence Theorem

Property 12 (Bachmair, Ganzinger 1990)

Let \succ be a clause ordering, let N be saturated wrt. Res, and suppose that $\bot \not\in N$. Then

$$I_N^{\succ} \models N$$
.

Corollary 13

Let N be saturated wrt. Res. Then

$$N \models \bot$$
 iff $\bot \in N$.

Corollary 14

Res is refutationally complete.

- p.83

Model Existence Theorem (cont'd)

Proof of Property 12:

Suppose $\bot \not\in N$, but $I_N \not\models N$.

(NB: $I_N = I_N^{\succ}$)

Let $C \in N$ be minimal (wrt. \succ) such that $I_N \not\models C$.

Since C is false in I_N , C is not productive.

As $C \neq \bot$, there exists a maximal atom A in C.

Case 1: $C = \neg A \lor C'$ (i.e., the maximal atom occurs negatively)

- \Rightarrow $I_N \not\models \neg A$ and $I_N \not\models C' \Rightarrow I_N \models A$ and $I_N \not\models C'$
- \Rightarrow some $D = D' \lor A \in N$ produces A. As $\frac{D' \lor A}{D' \lor C'}$, we infer that $D' \lor C' \in N$, and $C \succ D' \lor C'$ and $I_N \not\models D' \lor C'$

 \Rightarrow contradicts minimality of C.

Case 2: $C = C' \lor A \lor A$. Then $I_N \not\models A$ and $I_N \not\models C'$. Then $\frac{C' \lor A \lor A}{C' \lor A}$ yields a smaller exception $C' \lor A \in N$.

 \Rightarrow contradicts minimality of C.

- p.84

Summary

- Refutational completeness of *Res*
- Model construction
 - ► Given: Set N of ground clauses; atom ordering >
 - ► Output: Candidate model I_N^{\succ}
- Model Existence Theorem
- productive clause
- minimal exceptions

COMP60121: Automated Reasoning II

Lecture 6

Previously ...

- Basic resolution calculus for ground clauses
- Soundness
- Refutational completeness
- Model existence theorem
- Model construction, guided by ≻

- p.87

Ordered Resolution with Well-Behaved Selection

- Motivation: Search space for Res is very large.
- Ideas for improvement:
 - ► In the completeness proof (Model Existence Theorem, Pty 12) one only needs to resolve upon and factor maximal atoms
 - ⇒ if the calculus is restricted to inferences involving maximal atoms, the proof remains correct
 - ⇒ ordering restrictions
 - In the generalised completeness proof, it does not really matter with which negative literal an inference is performed
 - \Rightarrow choose a negative literal don't-care-nondeterministically
 - ⇒ well-behaved selection

Selection Functions

- **Note:** Since in Part II we are exclusively interested in well-behaved selection, we drop the reference 'well-behaved' and talk only about 'selection'. Thus, 'selection' in this part is not the same as in Part I.
- A selection function is a mapping

 $S: C \mapsto (\text{multi-})\text{set of occurrences of negative literals in } C$

Example of selection with selected literals indicated as <a>L

$$\neg A \lor \neg A \lor B$$

$$|\neg B_0| \lor |\neg B_1| \lor A$$

Maximality wrt ground & non-ground clauses

- In the completeness proof for the ground calculus, we talk about (strictly) maximal literals of ground clauses.
- General refutational completeness can be proved using refutational completeness of ground resolution, Herbrand's Theorem and
 - ► the 'lifting lemma': every ground refutation of a ground instance of *N* can be mapped step-wise to a non-ground refutation of *N*.

(See optional material on website, for details about refutational completeness of general resolution.)

 Fact: In the non-ground calculus, we have to consider those literals that correspond to (strictly) maximal literals of ground instances.

-

Maximal and strictly maximal literals

- Let ≻ be a total and well-founded ordering on ground atoms.
- A ground literal L is called maximal wrt. a ground clause C iff for all L' in C: $L \succ L'$.
- A ground literal L is called strictly maximal wrt. a ground clause C iff

for all L' in C: $L \succ L'$.

- A non-ground literal L is [strictly] maximal wrt. a clause C iff there exists a ground substitution σ such that for all L' in C: $L\sigma \succeq L'\sigma$ $[L\sigma \succ L'\sigma]$.
- If L is [strictly] maximal wrt. a clause C then we say that L is [strictly] maximal in $L \vee C$.
- Notation: maximal literals indicated by $\underline{\underline{L}}$

- p.91

Resolution Calculus Res

- Let \succ be an atom ordering and S a selection function.
- General ordered resolution calculus with selection Ress:

$$\frac{C \vee A \qquad \neg B \vee D}{(C \vee D)\sigma} \qquad \text{(ordered resolution with selection)}$$

provided $\sigma = mgu(A, B)$ and

- (i) $A\sigma$ strictly maximal wrt. $C\sigma$;
- (ii) nothing is selected in C by S;
- (iii) either $\neg B$ is selected, or else nothing is selected in $\neg B \lor D$ and $\neg B\sigma$ is maximal wrt. $D\sigma$.
- Note, variable standardisation needs to be applied to the premises before applying resolution.

Resolution Calculus Resc (cont'd)

Ordered factoring rule:

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$
 (ordered factoring)

provided $\sigma = mgu(A, B)$ and

- (i) $A\sigma$ is maximal wrt. $C\sigma$ and
- (ii) nothing is selected in C.
- Idea:
 - ► Inferences restricted to >-maximal or S-selected literals
 - ► *S* overrides ≻

- p.93

Special Instance: Res for Propositional Logic

 For propositional and ground clauses the resolution inference simplifies to

$$\frac{C \vee A \qquad \neg A \vee D}{C \vee D}$$

provided

- (i) A is strictly maximal wrt. C, i.e. $A \succ C$;
- (ii) nothing is selected in C by S;
- (iii) $\neg A$ is selected in $\neg A \lor D$, or else nothing is selected in $\neg A \lor D$ and $\neg A$ is max. wrt. D

Special Instance: Res for Propositional Logic (cont'd)

• Ordered factoring:

$$\frac{C \vee A \vee A}{C \vee A}$$

provided

- (i) A is maximal wrt. C and
- (ii) nothing is selected in C.

- p.95

we assume $A \succ B$ and S as

indicated by L. The maxi-

mal literal in a clause is de-

picted in <u>red</u>.

Search Spaces Become Smaller

• Example:

1.	$\underline{A} \vee B$	given
2.	$\underline{A} \vee \neg B$	given
3.	$\neg A \lor B$	given

4. $\neg A \lor \neg B$ given 5. $B \lor B$ Res 1, 3

6. *B* Fact 5

7. ¬A Res 6, 4

8. *A* Res 6, 2

9. ⊥ Res 8. 7

 With this ordering and selection function the refutation proceeds strictly deterministically in this example. Generally, proof search will still be non-deterministic but the search space will be much smaller than with unrestricted resolution.

Exercise

Consider the following set N of clauses.

- 1. $\neg P(x) \lor P(f(x))$
- 2. P(a)
- (i) Give a derivation for it under unrestricted resolution.
- (ii) Define an ordering or selection function, or both, so that no inference is performed on N.

p....

Exercise

Consider the following set N of clauses.

- 1. $\neg P(x) \lor P(f(x))$
- $2. \qquad P(a)$
- (i) Give a derivation for it under unrestricted resolution.
 - 1. $\neg P(x) \lor P(f(x))$ given

given

- P(a)
- 3. P(f(a)) (1,2)
- 4. P(f(a)) (1,3)
- 5. P(f(f(a))) (1,4)

:

(ii) Define an ordering or selection function, or both, so that no inference is performed on N.

Consider the following set N of clauses.

- 1. $\neg P(x) \lor P(f(x))$
- P(a)
- (i) Give a derivation for it under unrestricted resolution.
 - 1. $\neg P(x) \lor P(f(x))$ given
 - P(a)
- given
- $P(f(a)) \tag{1,2}$ 3.
- 4. P(f(a)) (1,3)
- P(f(f(a)))
- (1,4)
- (ii) Define an ordering or selection function, or both, so that no inference is performed on N.
 - 1. $\neg P(x) \lor P(f(x))$

2. $\underline{P(a)}$ Don't select any literals and use an ordering under which P(f(x)) is strictly maximal wrt. P(x)- p.97

Avoiding Rotation Redundancy

From

$$\frac{C_1 \vee A \qquad C_2 \vee \neg A \vee B}{C_1 \vee C_2 \vee B} \qquad C_3 \vee \neg B}{C_1 \vee C_2 \vee C_3}$$

we can obtain by rotation

$$\begin{array}{c|cccc}
C_1 \lor A & C_2 \lor \neg A \lor B & C_3 \lor \neg B \\
\hline
C_1 \lor A & C_2 \lor \neg A \lor C_3 \\
\hline
C_1 \lor C_2 \lor C_3
\end{array}$$

another proof of the same clause.

- In large proofs many rotations are possible.
- However, if $A \succ B$, then the second proof does not fulfill the ordering restrictions.

Avoiding Rotation Redundancy (cont'd)

Conclusion:

In the presence of ordering restrictions (however one chooses \succ) no rotations are possible. In other words, orderings identify exactly one representative in any class of rotation-equivalent proofs.

Soundness and Refutational Completeness

Property 15

Let \succ be an atom ordering and S a selection function such that $Res_{S}^{\succ}(N) \subseteq N$, i.e. N is saturated (wrt. Res_{S}^{\succ}). Then

$$N \models \bot$$
 iff $\bot \in N$

Proof:

The " \Leftarrow " part is trivial. For the " \Rightarrow " part consider the propositional level only: Construct a candidate model I_N^{\succ} as for unrestricted resolution, except that clauses C in N that have selected literals are not productive, even when they are false in I_C and when their maximal atom occurs only once and positively.

Summary

- ground and non-ground maximality of literal wrt. clause
- ordered resolution with selection Res_s[>]
 - ► inferences limited by ordering ≻
 - ightharpoonup inferences limited by selection function S
- soundness and refutational completeness

- p.101

COMP60121: Automated Reasoning II

Lecture 7

Previously ...

- Ways of limiting inferences & enhancing efficiency
 - ► ordering restriction ≻
 - ► selection function *S*
- Idea:
 - ► Inferences restricted to >-maximal or S-selected literals
 - ► *S* overrides ≻
- ground and non-ground maximality of literal wrt. clause

Application: Compactness of Propositional Logic

- A theoretical application of the refutational completeness of Res is compactness of propositional logic.
- Observe: If $N \vdash_{Cal} F$ then there exist $F_1, \ldots, F_n \in N$ s.t. $F_1, \ldots, F_n \vdash_{Cal} F$ If $N \vdash_{Res} \bot$ then there exist $C_1, \ldots, C_n \in N$ s.t. $C_1, \ldots, C_n \vdash_{Res} \bot$ (resembles compactness).

Note, N can be an infinite set of formulae.

Recall

N is unsatisfiable iff for any interpretation I, $I \not\models N$. $I \not\models N$ iff for some $C \in N$, $I \not\models C$

- p.104