COMP60162 Knowledge Representation and Reasoning

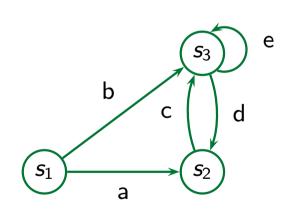
Ulrike Sattler Renate Schmidt

School of Computer Science University of Manchester

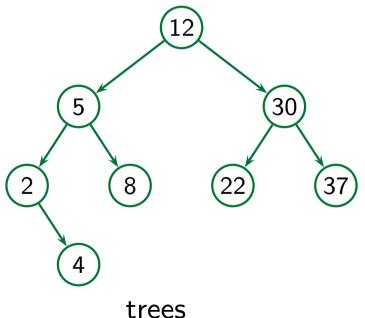
http://www.cs.man.ac.uk/~schmidt/COMP60162/

Overview

- Do check the website regularly for announcements
- Thursdays in Period 2: 10 Nov 12 Dec (coursework 15 Dec -19 Dec)
- Option for FM and AI specialisations
- Lectures presented in 4 parts:
 - ► Part I (Sattler, 3) Early KR formalisms, first-order logic
 - Part II (Schmidt, 8) Modal logic
 - Part III (Schmidt, 4) Description logic
 - Part IV (Sattler, 10) Extensions and applications


Part I: Early KR formalisms and first-order logic

- Early AI/KR research was very enthusiastic with very high goals
 - early KR formalisms were quite attractive
 - but also came with several problems which are well understood today
- Why first order logic? What is missing in propositional logic?
 - FOL allows to describe different objects and their relationship
 - ► FOL is "the unifying formalism" of many KR formalisms


Why modal logic? Why description logic? (1)

First-order logic is a very expressive language, can capture wide range of knowledge \rightsquigarrow Why ML? Why DL?

- ML and DL are expressively weaker than FOL.
- ML and DL are simpler, more natural languages, yet powerful enough to describe useful structures:

transition systems used to model program executions

Why modal logic? Why description logic? (2)

- ML and DL are very popular in CS and AI, have been "reinvented" many times.
- There are many applications.
- Modal and description logics have nice computational properties.
 - Reasoning in first-order logic is undecidable many MLs and DLs are decidable some MLs and DLs are undecidable We will mostly study decidable logics.
 - The MLs and DLs we study have nice computational complexity.

Part II: Modal logic

- Modal logics are a formal way of handling notions of knowledge, belief, time, actions, necessity, possibility, etc ('modalities')
- Modal logics allows us to model different modes of truths:
 - ► Gordon Brown is the prime minister of Britain is true now, but will not be true forever.
 - ► The square root of 625 is 25 is true (by definition), but it is not known by everyone.
 - ► This is the best of all possible worlds may or may not be true, but there are people who believe it and others who don't.

Sample specifications from multi-agent systems

Ор.	Name	Meaning
K _i	knowledge operator	agent <i>i</i> knows
\mathbf{B}_{i}	belief operator	agent <i>i</i> believes
0	next operator	after next election

 K_{Adam} (prime_minister(Gordon, GB) \land

(prime_minister(Gordon, GB) ∨ ¬prime_minister(Gordon, GB))

Adam knows, Gordon is currently the p.m. and after the next election Gordon will either be p.m. or not.

 $\mathbf{K}_{\mathsf{Eve}}$ prime_minister(Gordon, GB) $\wedge \mathbf{B}_{\mathsf{Eve}} \bigcirc \neg \mathsf{prime_minister}(\mathsf{Gordon}, \mathsf{GB})$

Eve knows Gordon is currently the p.m. and believes after the next election Gordon will not be p.m.

Part III: Description logics

- Description logics are about
 - modelling world knowledge, i.e. 'objective knowledge' of a particular domain of application
 - and reasoning about it
- DL systems have similar applications as databases but are more flexible and more expressive
- DLs systems are used for modelling ontologies;
 important for semantic web

Motivating example

A classical database stores information in a series of tables which represent relations.

Query: Is there a grandfather?

pare	male	
Phillip	Charles	Phillip
Charles	William	Charles
		William

Answer: No

Why not?

What is missing is a definition of the concept grandfather (a view). Suitable concept definitions in description logic would be:

grandfather $\stackrel{.}{=}$ male \sqcap \exists parent_of. \exists parent_of.human male $\stackrel{.}{\sqsubseteq}$ human

Services of description logic systems

- DLs allow the description of both concrete (database) and abstract information (concept definitions → ontologies).
- Sample inferential services:
 - consistency: KB consistent? grandfather consistent?
 - subsumption: grandfather subsumed by human?
 - ► instance checking: Charles an instance of ∃parent_of.human?
 - querying KB
- In contrast to databases, DL systems can handle incomplete information.

Part IV: Extensions and applications

 ICOM: a tool for intelligent conceptual modeling built to design and reason about ER/UML schemas, based on DLs

Non-standard reasoning services:

- applying DLs requires more than classical logical reasoning (validity, satisfiability, etc)
- to support domain experts which are not DL experts,
- e.g. to add new concepts into a knowledge base
- Example NSRS: approximating concepts computing the least common subsumer of some concepts computing the most specific concept for an individual, etc.

Part IV: Extensions and applications

Temporal DLs:

- so far, DLs were static
- ► to express knowledge about changes, actions, processes, etc., requires a notion of time, e.g.,
- CS_Student implies eventually (Rich or Famous)

• Defaults:

- ► so far, we only have strict axioms Bird implies CanFly
- some applications want default axioms
 Bird implies_by_default CanFly (because of Penguins, broken wings, oil desasters, etc.)
- how to extend FOL or DLs with such "defaults"

Pre-requisites

- Some knowledge of logic and formal methhods
- Not covered by lectures but part of first exercise sheet:
 - Elementary set theory

What is a set, a relation, a function, set operations (intersection, union, etc), properties of binary relations (reflexivity, symmetry, transitivity, etc).

- Propositional logic (Boolean logic) syntax, logical operators ∧, ∨, ¬, →, etc, truth tables
- First-order logic

First order logic formulae, their meaning, validity and satisfiability, translating between natural language and first-order logic.

Reading material

- Course unit does not follow a specific book: copies of the slides are made available.
- Recommended reading material: listed on the course description webpage.
- The books on the webpage are available in the Resources
 Centre. No need to buy a book for this course unit.
- Copies of any additional papers are available on the web or via the 'E-journals' facility of the main library.

Coursework

- Exercises and assignments are of varying difficulty some are aimed to consolidate the material of the lectures and are therefore easier.
- Some exercises and assignments are to be done with pencil and paper, some will require the use of tools (SPASS for the ML & DL part, ICOM for the DL application part).
- Assessed essay on a paper related to KR&R.
 You'll be given a list of papers from which you choose one.

Assessment

- 60% coursework
 - ► 35% for Uli's weekly coursework
 - ► 35% for Renate's weekly coursework
 - ► 30% for essay
- 40% exam