CS616 Knowledge Representation and Reasoning

Ulrike Sattler Renate Schmidt

Department of Computer Science University of Manchester

http://www.cs.man.ac.uk/~schmidt/CS616/

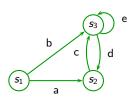
Overview

- Teaching week: 8–12 March 2004
- Do check the website regularly for announcements
- Lectures presented in 4 parts:
 - ► Part I (Sattler, 3) Early KR formalisms, first-order logic
 - ► Part II (Schmidt, 8) Modal logic
 - ► Part III (Schmidt, 4) Description logic
 - ► Part IV (Sattler, 10) Extended DLs and applications

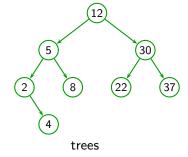
Aims of the course

- To provide an introduction to various extensions of classical propositional logic: first-order logic, modal logics, description logics, extended description logics
- To formalise knowledge and questions about this knowledge in these logics
- To use automated reasoning systems for answering these questions, and study underlying theories:
 SPASS for modal logic, ICOM for description logic
- To study applications and extensions, e.g.,
 - ► agents, semantic web, ontologies, and conceptual modeling
 - non-standard reasoning, temporal, non-monotonic, and defaults

Part I: Early KR formalisms and first-order logic


- Early AI/KR research was very enthusiastic with very high goals
 - early KR formalisms were quite attractive
 - but also came with several problems which are well understood today
- Why first order logic? What is missing in propositional logic?
 - ► FOL allows to describe different objects and their relationship
 - ► FOL is "the unifying formalism" of many KR formalisms

- p.2


Why modal logic? Why description logic? (1)

First-order logic is a very expressive language, can capture wide range of knowledge → Why ML? Why DL?

- ML and DL are expressively weaker than FOL.
- ML and DL are simpler, more natural languages, yet powerful enough to describe useful structures:

transition systems used to model program executions

- p.5

- p.6

Why modal logic? Why description logic? (2)

- ML and DL are very popular in CS and AI, have been "reinvented" many times.
- There are many applications.
- Modal and description logics have nice computational properties.
 - Reasoning in first-order logic is undecidable many MLs and DLs are decidable some MLs and DLs are undecidable.

 We will mostly study decidable logics.
 - ► The MLs and DLs we study have nice computational complexity.

Part II: Modal logic

- The language of modal logic
- Structures which interpret ML
- Symbolic model checking
- Properties of ML structures
- Hilbert-style deduction systems
- Reduction to first-order logic, using SPASS
- Modal logic and agents

Modal logics

- Modal logics are a formal way of handling notions of necessity, possibility, knowledge, belief, time, actions, etc ('modalities')
- Modal logics allows us to model different modes of truths:
 - ► Tony Blair is the prime minister of Britain is true now, but will not be true forever.
 - ► The square root of 625 is 25 is true (by definition), but it is not known by everyone.
 - ► This is the best of all possible worlds may or may not be true, but there are people who believe it and others who don't.

-

Modal operators and examples

Op.	Name	Meaning
K_i	knowledge operator	agent <i>i</i> knows
\mathbf{B}_{i}	belief operator	agent <i>i</i> believes
0	next operator	after next election

K_{Adam}(prime_minister(Tony, GB) ∧

(prime_minister(Tony, GB) ∨ ¬prime_minister(Tony, GB))

Adam knows, Tony is currently the p.m. and after the next election Tony will either be p.m. or not.

$$\mathbf{K}_{\mathsf{Eve}}$$
 prime_minister(Tony, GB) $\wedge \mathbf{B}_{\mathsf{Eve}} \bigcirc \neg \mathsf{prime_minister}(\mathsf{Tony}, \mathsf{GB})$

Eve knows Tony is currently the p.m. and believes after the next election Tony will not be p.m.

Modal logic: Applications

Modal logics have applications in

- program specifications
- program semantics
- concurrent programs
- communication protocols
- specification of rational (logic-based) agents
- reasoning about actions
- natural language processing
- accident analysis

Part III: Description logics

- Language, knowledge bases
- Meaning/semantics of description logic statements, meaning of knowledge bases
- Inferential services: consistency, subsumption, instance checking, classification, querying mechanisms
- Algorithms to solve these types of problems
- DLs as ontology languages and the semantic web

Purpose of description logics

- Whereas modal logics are used to model and reason about the thinking of agents, . . .
- Description logics are about
 - modelling world knowledge, i.e. 'objective knowledge' of a particular domain of application
 - ► and reasoning about it
- DL systems have similar applications as databases but are more flexible and more expressive
- DLs systems are used for modelling ontologies which play an important role in the intelligent use of the web
 - semantic web

.

-p.10

Motivation

A classical database stores information in a series of tables which represent relations.

Query: Is there a grandfa-

ther?

Answer: No Why not?

What is missing is a definition of the concept grandfather (a view). Suitable concept definitions in description logic would be:

has son

Charles

William

. . .

Phillip

Charles

. . .

male

Phillip

Charles

William

$$\label{eq:grandfather} \begin{tabular}{ll} $\mathsf{grandfather} \doteq \mathsf{male} \ \square \ \exists \mathsf{has_son.} \exists \mathsf{has_son.} \mathsf{human} \\ \\ \mathsf{male} \ \dot{\sqsubseteq} \ \mathsf{human} \\ \end{tabular}$$

- p.13

Services of description logic systems

- DLs allow the description of both concrete (database) and abstract information (concept definitions).
- A DL system provides inferential services which can fully automatically deduce new information from given information E.g. that Phillip is a grandfather
- In short: DLs are formalisms for representing and reasoning about information
- In contrast, to databases, DLs systems can handle incomplete knowledge bases.

Application areas

- Formal specification of ontologies for application domains
 E.g. medical expert systems, telecom systems configurations,
 component knowledge bases in the chemical industry, . . .

 New concepts are defined using already defined concepts;
 relationships are defined from concept definitions
- Consistency checks of formal specifications; coherence checks of ontologies
- Automatic classification of concepts → concept taxonomies
 E.g. botanical classification taxonomy
- Definition of concepts that occur in databases
- More expressive querying of databases
- Semantic web

Semantic web

- Internet search engines are based on keyword search.
 Disadvantage: the number of answers is huge; many answers are completely irrelevant, while some more intersting answers are not found
- **Idea:** The **semantic web** aims to facilitate *intelligent* use of the web.
 - Annotate web documents with a machine understandable description of their content, so that intelligent search/reasoning engines can do better than keyword search.
- Realisation: for "machine understandable description", use DLs (or variations),
 - base "intelligent search engines" on DL reasoners

- p.14

Part IV: Extensions and applications

 ICOM: a tool for intelligent conceptual modeling built to design and reason about ER/UML schemas, based on DLs

• Non-standard reasoning services:

- applying DLs requires more than classical logical reasoning (validity, satisfiability, etc)
- ► to support domain experts which are not DL experts,
- e.g. to add new concepts into a knowledge base
- ► Example NSRS: approximating concepts computing the least common subsumer of some concepts computing the most specific concept for an individual, etc.

- p.17

-p.18

Part IV: Extensions and applications

Temporal DLs:

- ► so far, DLs were static
- ► to express knowledge about changes, actions, processes, etc., requires a notion of time, e.g.,
- CS_Student implies eventually (Rich or Famous)

• Defaults:

- ► so far, we only have strict axioms Bird implies CanFly
- some applications want default axioms Bird implies_by_default CanFly (because of Penguins, broken wings, oil desasters, etc.)
- ► how to extend FOL or DLs with such "defaults"

Pre-course work

• Elementary set theory

What is a set, a relation, a function, set operations (intersection, union, etc), properties of binary relations (reflexivity, symmetry, transitivity, etc).

Propositional logic (Boolean logic)
 Very simple representation language; expressively weak; modal logics and description logics are natural extensions.

• First-order logic

First order logic formulae, their meaning, validity and satisfiability, translating between natural language and first-order logic.

Exercise sheet will be made available.

Reading material

- Course unit does not follow a specific book: copies of the slides are made available.
- Recommended reading material: listed on the course description webpage. List is not final and may change until the start of the module.
- The books on the webpage are available in the Resources Centre. No need to buy a book for this course unit.
- Copies of any additional papers will be made available on the web.

- P

Coursework

- Exercises and assignments are of varying difficulty those in the teaching week are aimed to consolidate the material of the lectures and are thus easier.
- Some exercises and assignments are to be done with pencil and paper, some will require the use of tools (SPASS for the ML & DL part, ICOM for the DL application part).
- For the **post-course work** you will be given a selection of topics from which you choose one.
 - This work may involve writing a program, formalising problems, using reasoning tools for solving such problems, a case study on some research in one of the areas, or a mixture of these.

- p.21

Assessment

- 5% assignments in the pre-course week,
- 25% assignments in the teaching week,
- 30% post-course work,
- 40% exam