
Tracking Logical Difference in Large-Scale Ontologies: A Forgetting-Based Approach

Yizheng Zhao Ghadah Alghamdi Renate A. Schmidt Hao Feng Giorgos Stoilos Damir Juric Mohammad Khodadadi University of Manchester, UK¹ North China University of Science & Technology Babylon Health

AAAI 2019, Honolulu, Jan 2019

¹Thanks to EPSRC IAA 204, Babylon Health, SoCS

Our interest: Tracking differences in ontologies

- Information belonging to the old version (first ontology)
- Information belonging to the new version (second ontology)

Useful for:

- supporting ontology curation and maintenance
- ► ontology intergration, quality assurance

Problems: Syntactic differences of limited use
Logical difference only approximated
Inability to handle large-scale ontologies

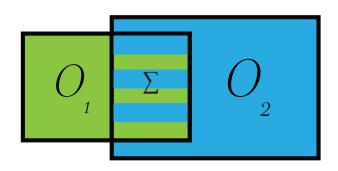
Contribution:

New, practical method for logical difference analysis

UI-based logical difference approach

compact, finite (!) representation of logical difference

New UI/forgetting-based method


super-fast

Can track very large scale ontologies

SNOMED CT > 335K concept definitions

NCIt > 60K concept definitions

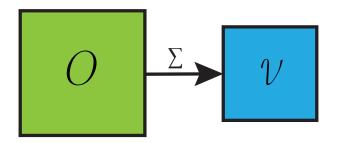
Logical Difference

$$\Sigma = \mathsf{sig}(\mathcal{O}_1) \cap \mathsf{sig}(\mathcal{O}_2)$$

Goal: Compute logical difference Diff $_{\Sigma}(\mathcal{O}_1, \mathcal{O}_2)$ s.t.

$$\alpha \in \mathsf{Diff}_{\Sigma}(\mathcal{O}_1, \mathcal{O}_2)$$
 iff (i) $\mathsf{sig}(\alpha) \subseteq \Sigma$

- (ii) $\mathcal{O}_2 \models \alpha$, but $\mathcal{O}_1 \not\models \alpha$


Problem: Computationally infeasible because in general infinite Therefore, existing methods approximate $\text{Diff}_{\Sigma}(\mathcal{O}_1,\mathcal{O}_2)$

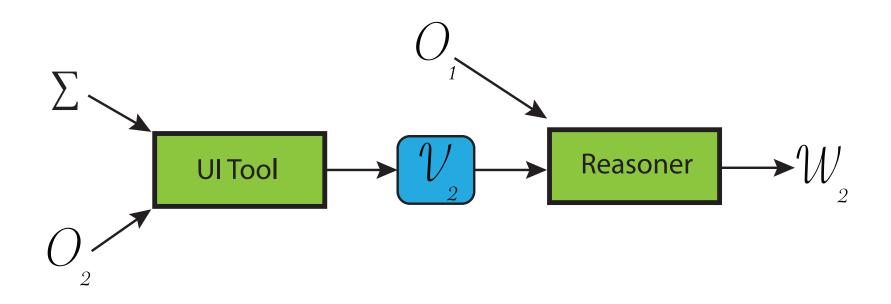
- Syntactically generated and tested: ECCO α of the form $A \sqsubseteq B$ or $A \sqsubseteq \exists r.B$ $\{A, B, r\} \subseteq \Sigma$
- depth-limited uniform interpolants: CEX

Our solution:

Finite UI-Diff representation

Uniform interpolation and forgetting

Goal: Compute uniform interpolant \mathcal{V} s.t.


- (i) $sig(V) \subseteq \Sigma$
- (ii) $\mathcal{O} \models \mathcal{V}$ and \mathcal{V} is strongest such entailment

Useful in many domains:

ontology \longrightarrow abstraction capturing all info involving Σ ontology \longrightarrow restricted view obtained by forgetting $\overline{\Sigma}$ ontology, observation \longrightarrow abduced hypothesis

For \mathcal{ALC} ontologies and others UI is solvable in an extended language

UI-based logical differences

Algorithm:

- (1) Compute uniform interpolant V_2 of \mathcal{O}_2 for $\Sigma = \operatorname{sig}(\mathcal{O}_1) \cap \operatorname{sig}(\mathcal{O}_2)$
- (2) Compute set of **UI-witnesses**

$$\alpha \in \mathsf{UI-Diff}_{\Sigma}(\mathcal{O}_1, \mathcal{O}_2)$$
 iff (i) $\mathsf{sig}(\alpha) \subseteq \Sigma$ (ii) $\alpha \in \mathcal{V}_2$, but $\mathcal{O}_1 \not\models \alpha$

UI-Diff $_{\Sigma}(O_1, \mathcal{O}_2)$ is a finite representation of Diff $_{\Sigma}(O_1, \mathcal{O}_2)$

UI and forgetting tools

Tool	Complete	Method
NUI	no	depth-bounded uniform
		interpolation
LETHE	yes	uniform interpolation
Fame 1.0	no	semantic forgetting

All too slow for SNOMED CT

Contribution: New forgetting method

- ► The first method capable of computing the logical differences between very large ALC-ontologies
- ▶ Compute finite set of the differences set $Diff(\mathcal{O}_1,\mathcal{O}_2)$ using UI method
- Can handle cyclic ALC-ontologies by introducing definer names in a conservative manner
- ► Uses Ackermann rules with purification and combination rules to eliminate symbols in a fast and efficient way

Evaluation of the forgetting method

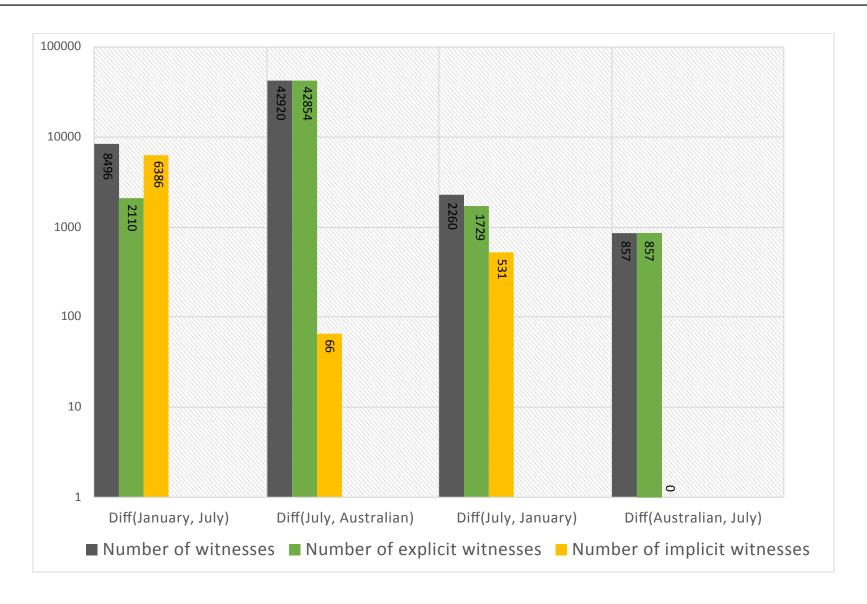
Tool	#F (%F)	Time	T.O.	S. Rate	Extra
Prototype	199 (10%)	0.7s	1.8%	96.4%	1.8%
	597 (30%)	1.5s	2.5%	93.7%	3.8%
	995 (50%)	2.4s	4.8%	90.1%	5.1%
LETHE	199 (10%)	25.6s	8.8%	81.4%	9.8%
	597 (30%)	75.3s	19.0%	65.0%	16.0%
	995 (50%)	127.1s	29.3%	50.5%	20.2%
FAME 1.0	199 (10%)	0.6s	1.8%	87.2%	11.0%
	597 (30%)	1.3s	2.5%	73.5%	24.0%
	995 (50%)	2.0s	4.8%	66.7%	28.5%

At least 25 times faster than Lethe. Up to 24 % points better success rates than ${\rm FAME}~1.0$

Corpus: 396 slightly-adjusted NCBO BioPortal ALC-ontologies Intel Core i7-4790 4 core CPU, 3.60 GHz, 8GB, DDR3-1600 MHz RAM 1000 seconds timeout

SNOMED CT logical difference evaluation

SNOMED CT ontologies: Core Jan., Core July, Australia extension, Canada extension (2017)


Statistics for forgetting tasks within logical difference implementation:

Case	UI-Diff(\mathcal{O}_1 , \mathcal{O}_2)	$\#\mathcal{F}_{C}$	$\#\mathcal{F}_{R}$	#cls_set
1	UI-Diff (January, July)	10696	17	648080
2	UI-Diff (July, January)	614	0	630483
3	UI-Diff (July, Australian)	102880	15	1435778
4	UI-Diff (Australian, July)	6	0	648080
5	UI-Diff (July, Canadian)	1700	0	650341
6	UI-Diff (Canadian, July)	0	0	648080

 $\#\mathcal{F}_{\mathbf{C}}$: Number of concepts $\#\mathbf{cls_set}$: Number of clauses

 $\#\mathcal{F}_{\mathbf{R}}$: Number of roles

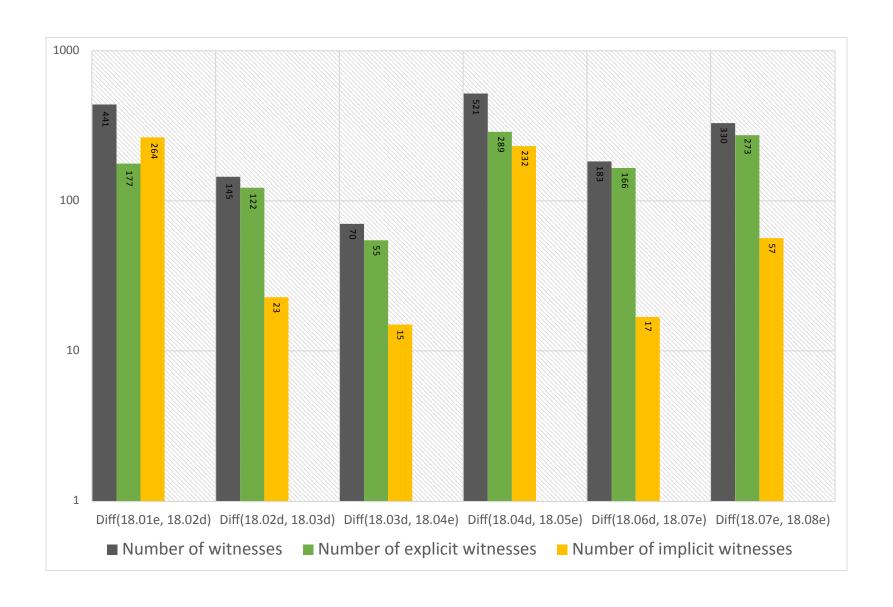
SNOMED CT logical difference evaluation

Canadian extension is a conservative extension of the core July 2017 edition

NCIt logical difference evaluation

NCIt ontologies: 8 versions, January to August (2018)

Only information gained was computed


Statistics for forgetting tasks within logical difference implementation:

Case	UI-Diff(\mathcal{O}_1 , \mathcal{O}_2)	$\#\mathcal{F}_{\mathbf{C}}$	$\#\mathcal{F}_{R}$	#cls_set
1	UI-Diff (18.01e, 18.02d)	3719	0	283326
2	UI-Diff (18.02d, 18.03d)	963	0	284806
3	UI-Diff (18.03d, 18.04e)	1294	0	286861
4	UI-Diff (18.04e, 18.05d)	2404	0	291462
5	UI-Diff (18.06d, 18.07e)	299	0	292091
6	UI-Diff (18.07e, 18.08e)	778	0	293426

 $\#\mathcal{F}_{\mathbf{C}}$: Number of concepts $\#\mathbf{cls_set}$: Number of clauses

 $\#\mathcal{F}_{\mathbf{R}}$: Number of roles

NCIt logical difference evaluation

Concluding remarks

Contributions

- ► Practical logical difference analysis tool for very large ontologies
- ► Based on new high-performance deductive forgetting method and tool
- Gives ontology engineers a powerful tool for tracking changes in real-world ontologies

Future work

► Eliminate the use of external reasoner