
DEVELOPMENT OF A TABLEAUX

RESOLUTION PROVER

A thesis submitted to the University of Manchester

for the degree of Master of Science

in the Faculty of Engineering and Physical Sciences

2009

By

Rawan Ghali AlBarakati

School of Computer Science

Contents

Abstract 7

Declaration 8

Copyright 9

Dedication 10

Acknowledgements 11

1 Introduction 12

2 Modal logic tableaux 15

2.1 Traditional modal logic . 15

2.2 Dynamic modal logics . 18

2.3 Tableau for modal logic . 21

2.4 Formula normalization . 25

3 Resolution 28

3.1 First-order resolution . 28

3.2 Ordered hyper-resolution . 32

3.3 The resolution theorem prover SPASS 33

4 Simulation of tableaux via first-order resolution 39

4.1 Structural transformation for first-order logic 39

4.2 Structural transformation for dynamic modal logic 41

4.3 Simulating tableau for K(m)(∧,∨,^) 46

5 Using SPASS as a Tableau Resolution Prover 50

5.1 Normalisation of input . 50

2

5.2 Associating modal formulae with first-order translations 51

5.3 A new approach to renaming . 53

5.4 From resolution to tableau . 62

5.5 Setting tableau step indentation 68

5.6 Tableau proofs and models . 72

5.7 Branching comes last . 74

6 Adding relational frame conditions 78

6.1 Simulating relational conditions 78

6.2 Redefining tableau rules . 80

6.3 Representing rule nodes in the output 86

6.4 Making all rules structural . 88

7 Tableau simulation results 90

7.1 Expected input . 90

7.2 Avoiding redundancy . 91

7.3 Testing renaming of negated formulae 92

7.4 Testing renaming of relational formulae 95

7.5 Testing proof indentation . 97

7.6 Applying non-branching rules first 98

7.7 Intelligent backtracking in SPASS 101

7.8 Testing frame conditions on traditional modal logics 103

7.9 Relational frame conditions in dynamic modal logic 106

8 Conclusion 108

A Full input example 111

B Full output example 112

Bibliography 115

3

List of Figures

2.1 Defined operators . 16

2.2 Basic modal logic semantics . 17

2.3 Modal logic axioms, corresponding properties and first-order defi-

nitions . 18

2.4 Dynamic modal logic semantics 19

2.5 Directed graph example of a Kripke frame 20

2.6 Translation to first-order logic for K(m)(∧,∨,^) 21

2.7 First-order translation of [r1][r2](p ∧ ¬q) 21

2.8 Basic modal logic tableaux Calculus 22

2.9 Structural tableau rules for axioms T, D, B, 4 and 5 23

2.10 Tableaux Calculus for K(m)(∧,∨,^) 23

2.11 Tableau branching rules with semantic branching 25

2.12 Comparison between two derivations of equivalent formulae 26

2.13 Rewrite rules . 27

3.1 Resolution derivation example . 29

3.2 The resolution calculus Rred
sp . 31

3.3 Comparison . 33

3.4 Input problem example in DFG syntax 35

3.5 SPASS ouput . 36

4.1 Definition of the translation mappings π′ and τ ′ 43

4.2 Definitional clausal forms for K(m)(∧,∨,^) 44

4.3 Transformation of Ξ(ϕ) into clausal form 46

4.4 Using hyper-resolution Hsp on N from Figure 4.3 48

5.1 Mapping first-order translations to original modal formulae 52

5.2 Introducing fresh Skolem predicates for first-order formulae asso-

ciated with non-atomic modal formulae 54

4

5.3 Results for applying structural transformation and the produced

clausal form . 55

5.4 Converse simplification rewrite rules 58

5.5 Association of first-order and dynamic formulae, and introduced

symbols . 61

5.6 Structural transformation and clausal form of renaming example . 61

5.7 Tableau steps data structure with examples 62

5.8 Encoding of tableau rules . 64

5.9 Algorithm for translating input definitional clauses to tableau rules 65

5.10 Using indentation to represent tableau branches 69

5.11 Corresponding tree representation 69

5.12 Example of a branches table . 71

5.13 Illogical proof structure . 75

5.14 Tree representation of illogical proof structure 76

5.15 Algorithm for choosing a clause not suitable for splitting 77

6.1 Definitions and produced clausal form for axioms T, D, B, 4 and 5 78

6.2 Tableau rules for axiom properties 81

6.3 Tableau application rules for traditional modal logic 82

6.4 New tableaux calculus for K(m)(∧,∨,^) 86

6.5 Properties clauses and rule translations 87

6.6 Derivation of [r][r]¬p ∧ [r]p in KD4 with defined worlds 89

7.1 Avoidance of redundancy . 91

7.2 Testing negated formulae renaming - 1 93

7.3 Testing negated formulae renaming - 2 94

7.4 Testing relational formula renaming 95

7.5 Testing proof indentation . 97

7.6 Testing the logical order of derivation steps - 1 99

7.7 Testing the logical order of derivation steps - 2 100

7.8 Intelligent backtracking . 102

7.9 Symmetry and axiom B . 103

7.10 Reflexivity and axiom T . 104

7.11 Seriality and axiom D . 104

7.12 Transitivity and axiom 4 . 105

7.13 Euclideanness and axiom 5 . 105

5

7.14 Relational frame conditions on dynamic logic 106

6

Abstract

Proof systems carry great benefit for the field of artificial intelligence because of

the reasoning services they provide for AI applications. Semantic tableau and

first-order resolution are two proof systems that operate considerably differently

from each other. When choosing which proof system to use for an application, the

decision bears a trade-off between efficiency and readability. Semantic tableau

is considered more comprehensible and user-friendly, but when it comes to per-

formance, it is hard to decide which is better because there are many factors

to consider when benchmarking [HS99]. Some researchers studied the two proof

systems in search of a link between them and found that despite the differences in

operation resolution provers can be adapted to simulate semantic tableau deriva-

tions. The result of this simulation enables testing the performance of the two

systems on common grounds. In this thesis, I extend the first-order resolution

theorem prover SPASS so that it simulates semantic tableau and provide tableau

proofs and models translated from resolution proofs and saturated sets of clauses.

The logics considered are traditional modal logics and dynamic modal logics de-

fined over relations closed under intersection, union and converse with the support

of adding relational frame conditions.

7

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

8

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available

from the Head of School of Computer Science (or the Vice-President).

9

Dedication

I dedicate this thesis to the memory of my brother Dr. Rakahn Ghali AlBarakati.

May God have mercy on his soul.

10

Acknowledgements

First and above all, I am grateful to God -the one and only- who is worthy of

every praise for the opportunity, impetus and inspiration that lead me to com-

pleting and presenting this thesis.

I would also like to express my sincere appreciation to my supervisor Dr. Re-

nate A. Schmidt. Her constructive remarks, guidance and enlightenment on my

work have been invaluable.

I am sincerely grateful to my parents Mrs. Elham AlBarakati and Dr. Ghali

G. AlBarakati and the rest of my family who are the reason I am who I am today,

and for the care and love they have always provided. I am especially thankful to

my mother for her continuous prayers and blessings.

I am forever in debt to my husband Khaled Ali Fawaz for his utmost under-

standing, and ultimate support, love and encouragement.

Last but not least, I am grateful to my country the Kingdom of Saudi Arabia

and precisely the Ministry of Education for supporting and financially aiding my

studies throughout this year.

11

Chapter 1

Introduction

The aim of this dissertation is to implement a tableau-resolution prover using

the first-order resolution prover SPASS.

The simulation of semantic tableau calculi for various modal and description

logics via first-order resolution has been studied and discussed in several papers

including [HS99, HdNS00, HS02, GHS03, Sch06, SH07, Sch08]. These studies

show that the simulation becomes possible by mainting a link to original modal

logic subformulae. A modal logic formula is translated into first-order logic and

transformed into a clausal form that first-order resolution can operate on. The

link between the clausal form and the modal logic formula is obtained by using

a controlled form of a standard technique called structural transformation, which

is also referred to as renaming. By this technique, new predicates that in our

case represent subformulae of the modal logic problem replace their first-order

translation. Because of the retained information on the original problem, the

clauses produced by the resolution derivation can easily be translated back to

original modal or description logic subformulae.

In the latest papers on this subject by Schmidt [Sch06, Sch08], a refined frame-

work of resolution called hyper-resolution performed over range-restricted clauses

is used to produce the exact inferences that simulate tableau. Range-restricted

clauses are clauses where all clause variables appear in negative clause literals and

all positive clauses are ground. In the cited papers, these clauses are obtained

by applying a special kind of first-order translation and structural transforma-

tion used specifically for dynamic modal logic formulae that is both sound and

12

CHAPTER 1. INTRODUCTION 13

complete.

In this thesis, I focus on the simulation of traditional modal logics and the dy-

namic modal logic K(m)(∧,∨,^), but the implementation can easily be extended

to include an even wider range of logics.

Dynamic modal logics allow the necessity and possibility modal logic oper-

ators to be defined over relational formulae. This kind of expressivity makes

them closely connected to description logics and multi-agent systems. Modal

and description logics can actually be viewed as syntactic variants of each other.

Description logics has lately become the focal point of research because of the

reasoning services it provides for the semantic web.

My implementation of the tableau-resolution prover relies to a big extent

on [Sch06, Sch08]. However, instead of the suggested new version of structural

transformation, I introduce a new technique that utilises standard first-order

translation and structural transformation to acquire the range-restricted clauses.

Furthermore, the clauses produced by the technique I introduce are fewer and

maintain soundness and completeness. In addition, I explain how generic rela-

tional frame conditions can naturally be imposed in first-order resolution and

justified in tableau by redefining the modal logic tableau calculus in a way that

reflects what happens in the simulation.

Extending a first-order resolution prover to simulate semantic tableau results in

providing users with the option of obtaining tableau justification for no extra cost.

Semantic tableau is viewed to be more comprehensible and user-friendly than

resolution. This simulation also means that the simulated tableau derivations,

proofs and models immediately inherit the advanced optimizations provided by

resolution procedures.

The rest of this thesis is constructed as follows: Chapter 2 describes traditional

and dynamic modal logics, and gives the tableau calculi for these logics. Chap-

ter 3 explains first-order resolution, the hyper-resolution refinement, and gives a

brief introduction to the first-order resolution theorem prover SPASS. Chapter 4

describes the two kinds of structural transformation used in the literature and

the important role structural transformation plays in the simulation of ground

CHAPTER 1. INTRODUCTION 14

semantic tableau via first-order resolution. In Chapter 5, I describe my extension

of SPASS that simulates ground semantic tableau and prints out tableau trans-

lated proofs and models. The chapter addresses the problems that I faced during

the implementation and what solutions I used to overcome these problems. It

also introduces a new approach I devised for structural transformation so that it

utilises the standard techniques already implemented in SPASS. In Chapter 6, I

explain how relational frame conditions can be introduced in first-order resolution

for traditional and dynamic modal logics and translated directly to tableau rules.

In the chapter, I redefine the tableau calculi for traditional and dynamic modal

logic in a way that justifies the approach I use. In Chapter 7, I provide and ex-

plain a number of derivation results produced by the extended version of SPASS,

which serve as an evaluation metric to the implemented work and introduced

solutions.

Chapter 2

Modal logic tableaux

This chapter gives an overview of the tableau calculus that the implementation

of this project simulates. This includes giving background on the extensions the

modal logics that are considered for the tableau simulation. Modal logics, which

are viewed as syntactic variants of description logics are playing an increasing role

in computer science and especially when it comes to the hot topic of ontology

languages and the semantic web.

The rest of this chapter is organized as follows: Section 2.1 explains the syn-

tax and semantics of traditional modal logics. Section 2.2 explains the syntax

and semantics of the modal logic K(m) (∧,∨,^). It also gives the definition of

the standard translation of modal logic formulae into first-order logic, which is

essential for the simulation via first-order resolution. Section 2.3 presents the

semantic tableau calculus for traditional modal logic and the dynamic modal

logic K(m)(∧,∨,^) on the underlying Kripke semantics. Finally, Section 2.4 ex-

plains the benefits of eliminating defined operators and explains the process of

normalization.

2.1 Traditional modal logic

Modal logics are logics that were introduced to model notions of knowledge and

belief and allow us to reason about these notions. Modal logics have been applied

in several fields other than computer science including philosophy, linguistics and

mathematics [Sch09b]. The basic modal logic extends propositional logic with

two operators: the box (�) operator and diamond (♦) operator also called the

15

2.1. TRADITIONAL MODAL LOGIC 16

necessity and possibility operators, respectively.

Logic operators can be categorised into two categories: basic operators and

defined operators. The choice of basic operators may differ according to pref-

erence, but the point is to choose a minimal subset of operators for expressing

formulae. In this thesis, we choose as basic operators for modal logics: ⊥,¬,∧
and �. Any modal logic formula can be expressed using these four operators.

Figure 2.1 defines the defined operators in terms of basic operators.

formula using defined operator equivalent form using basic operators

> ¬⊥
ϕ↔ φ (ϕ ∧ ¬φ) ∧ (φ ∧ ¬ϕ)
ϕ→ φ ϕ ∧ ¬φ
ϕ ∨ φ ¬(¬ϕ ∧ ¬φ)

♦ϕ ¬�¬ϕ

Figure 2.1: Defined operators

The benefits of reducing a formula to the minimum number of basic operators

for tableaux is discussed later on in Section 2.4.

[Sch09b] is the main reference used for defining the syntax and semantics of

traditional modal logics in this section.

Syntax

Let pi be a countably finite set of propositional variables. The following definition

is the basic modal logic definition adapted from [Sch09b]. The difference is that

the definition here is limited to the chosen set of basic operators.

1. every propositional symbol in the set pi is a modal formula.

2. ⊥ (false) is a modal formula.

3. if φ and ϕ are modal formulae then: ¬φ, (φ ∧ ϕ), and �φ are all modal

formulae.

2.1. TRADITIONAL MODAL LOGIC 17

An atomic modal formula is either a propositional variable or ⊥. These for-

mulae are called atomic because they cannot be disassembled into subformulae.

All other modal formulae are non-atomic and can be disassembled into smaller

subformulae.

We assume the following precedence of the operators from highest to lowest:

¬ � ∧. ∧ is assumed to be an associative operator.

Semantics

Modal logics are widely defined on Kripke semantics [Kri63]. Kripke defines

modal logics over frames. A Kripke frame F is a tuple (W,Rr) consisting of a

non-empty set of worlds W and a relation Rr.

A Kripke model is a tuple M = (F , v), where F is a Kripke frame and v is a

mapping from propositional variables to subsets of W . The mapping function v

denotes which propositional symbols are true in which world. M, x |= φ denotes

that a formula φ is true at world x in model M. A modal formula φ is said to

be satisfiable if and only if there is a world x in a modelM such thatM, x |= φ.

A formula is said to be valid if and only if it is satisfiable in every world of all

models.

The truth of modal formulae is defined in Figure 2.2.

Truth of basic modal logic formulae

M, x 2 ⊥
M, x � p iff x ∈ v(p)
M, x � ¬φ iff M, x 2 φ
M, x � φ ∧ ψ iff both M, x � φ and M, x � ψ
M, x � �φ iff (x, y) ∈ Rr implies M, y � φ, for any y ∈ W

Figure 2.2: Basic modal logic semantics

M, x 2 ⊥ means that in every world in M, ⊥ is false. M, x � �φ means that

for every world y accessible from the world x via the accessibility relation Rr, φ

must be true.

2.2. DYNAMIC MODAL LOGICS 18

The basic modal logic represented by K can be extended with certain rela-

tional properties. The relational properties impose frame conditions. The result

is that certain formulae become valid on the frames satisfying associated rela-

tional properties. Formulae that are valid under certain relational conditions are

called axioms. Figure 2.3 features a set of well-known axioms, the corresponding

relational properties and the first-order definitions of properties. For instance,

we say that a frame F validates axioms T, D and 4 iff Rr is reflexive, serial and

transitive.

Name Axiom Property First-order definition

T �p→ p reflexivity ∀xRr(x, x)
D �p→ ♦p seriality ∀x∃yRr(x, y)
B p→ �♦p symmetry ∀xRr(x, y)→ Rr(y, x)
4 �p→ ��p transitivity ∀x, y, z((Rr(x, y) ∧Rr(y, z))→ Rr(x, z))
5 ♦p→ �♦p euclideanness ∀x, y, z((Rr(x, y) ∧Rr(x, z))→ Rr(y, z))

Figure 2.3: Modal logic axioms, corresponding properties and first-order defini-
tions

If Σ is a sequence of symbols chosen from D, T, B, 4, 5, then KΣ is a modal

logic with frames satisfying the properties associated with the axioms indicated

by the symbols in Σ [Sch09b].

2.2 Dynamic modal logics

Syntax

Multi-modal logic K(m) is the basic modal logic but with multi � operators. A

multi modal logic box operator is denoted in this thesis by [ri], where ri is a

relational variable. Dynamic modal logics can be viewed as being extensions of

the multi-modal logic K(m) in which the modal operators can be parametrised by

relational formulae. As an example, [r1 ∧ r2] is a dynamic modal operator and

not a multi-modal operator. Having relational formulae in dynamic modal logic

makes it closely related to description logics [Sch08]. The different relations and

relational formulae can be used to formalise dynamic notions such as actions or

programs and are useful in linguistic and AI applications [SH06].

2.2. DYNAMIC MODAL LOGICS 19

K(m)(∧,∨,^) is the multi-modal logic defined over frames in which the rela-

tions are closed under intersection, union and converse. Let pj be a countably

finite set of propositional variables, and ri a countably finite set of relational

variables. K(m)(∧,∨,^) is defined as follows:

1. every propositional symbol in the set pj is a dynamic modal formula.

2. ⊥ (false) is a dynamic modal formula.

3. if φ and ϕ are dynamic modal formulae and α is a relational formula, then:

¬φ, (φ ∧ ϕ), and [α]φ are dynamic modal formulae.

4. if α and β are relational formulae, then so are: α ∧ β, α ∨ β and α^.

Semantics

The difference between the semantics of dynamic modal logic and basic modal

logic is that for dynamic modal logic the Kripke frame F is a tuple (W,R) con-

sisting of a non-empty set of worlds W and a mapping function R from relational

formulae to relations.

The truth of dynamic modal formulae is defined in Figure 2.4.

Truth of dynamic modal formulae

M, x 2 ⊥
M, x � p iff x ∈ v(p)
M, x � ¬φ iff M, x 2 φ
M, x � φ ∧ ψ iff both M, x � φ and M, x � ψ
M, x � [α]φ iff (x, y) ∈ Rα implies M, y � φ, for any y ∈ W

Relational conditions

Rα∧β = Rα ∩Rβ

Rα∨β = Rα ∪Rβ

Rα^ = R^
α

Figure 2.4: Dynamic modal logic semantics

M, x � [α]φ means that for every world y accessible from the world x via

the accessibility relation formula defined in �, φ must be true. For instance,

M, x � [r1∨r2] p means that every world y accessible from x via either one of

2.2. DYNAMIC MODAL LOGICS 20

the two relations Rr1 and Rr2, p must be true. R^
α denotes the inverse of the

relation.

Kripke frames can be depicted by labelled directed graphs. The nodes of a

graph represent worlds, and connecting arrows represent accessibility relations.

Figure 2.5 depicts the frame:

.F = ({1, 2, 3, 4}, {Rr1(1, 2), Rr2(1, 4), Rr2(3, 3), Rr1(4, 2), Rr1(4, 1)})

There are four nodes in the graph representing the four worlds 1, 2, 3 and 4.

Labelling the nodes with propositional variables denotes that the variable is true

in the respective world.

?>=<89:;1
Rr1 **

Rr2

��

?>=<89:;2

?>=<89:;3Rr2 55
?>=<89:;4

Rr1

TT

Rr1

XX

Figure 2.5: Directed graph example of a Kripke frame

Dynamic modal logic translation to first-order logic

The translation of modal logic to first-order logic is discussed here because sim-

ulation of tableau calculus is done by using first-order resolution. The standard

translation of modal formulae into-first order logic is straight forward. For a given

modal formula ψ, the translation function Π translates any modal formula into

first-order logic by the following definition:

Π(ψ) = ∃x. π(ψ, x)

The definition of π and the relational formulae translation function τ for the logic

K(m)(∧,∨,^) is given in Figure 2.6.

Let us workout a small example that will be used for illustration later on. Let

ϕ = [r1][r2](p ∧ ¬q). Figure 2.7 shows the translation steps that result from

applying the translation rules given in Figure 2.6.

2.3. TABLEAU FOR MODAL LOGIC 21

Propositional translation Relational translation

π(⊥, x) = ⊥ τ(ri, x, y) = Ri(x, y)
π(pj, x) = Pj(x) τ(α ∧ β, x, y) = τ(α, x, y) ∧ τ(β, x, y)
π(¬ψ, x) = ¬π(ψ, x) τ(α ∨ β, x, y) = τ(α, x, y) ∨ τ(β, x, y)
π(ψ ∧ ϕ, x) = π(ψ, x) ∧ π(ϕ, x) τ(α^, x, y) = τ(α, y, x)
π([α]ψ, x) = ∀y(τ(α, x, y)→ π(ϕ, y))

Figure 2.6: Translation to first-order logic for K(m)(∧,∨,^)

Π(ϕ) = ∃x. π([r1][r2](p ∧ ¬q), x)
= ∃x.∀y. (τ(r1, x, y)→ π([r2](p ∧ ¬q), y))
= ∃x.∀y. (Rr1(x, y)→ (∀z. τ(r2, y, z)→ (π(p ∧ ¬q, z))))
= ∃x.∀y. (Rr1(x, y)→ (∀z.Rr2(y, z)→ (π(p, z) ∧ π(¬q, z))))
= ∃x.∀y. (Rr1(x, y)→ (∀z.Rr2(y, z)→ (Pp(z) ∧ ¬π(q, z))))
= ∃x.∀y. (Rr1(x, y)→ (∀z.Rr2(y, z)→ (Pp(z) ∧ ¬Pq(z))))

Figure 2.7: First-order translation of [r1][r2](p ∧ ¬q)

2.3 Tableau for modal logic

A semantic tableau is a formal proof procedure based on refutation; given an

initial formula ϕ, it tries to show that ¬ϕ is unsatisfiable. A tableau derivation is

usually presented with a branching tree. The nodes of the tree represent labelled

formulae. For the formula ϕ, the tableau derivation has the set {a : ϕ} as its root

node. a is a constant representing a world where ϕ is true.

In general, inference rules, which are called expansion rules are of the form:

X

X1 | ... | Xn

where X and Xi denote the sets of premises and conclusions respectively. Each

rule is applied only once to the same set of instances of premises of a rule.

A tableau branch is expanded at its leaf node creating up to n successor nodes

by applying the relevant inference rule. A branch in a tableau tree stops expand-

ing if no more rules are applicable or if a contradiction is found. A contradiction

results from having a formula and its negation in the same world in a branch.

If such a case exists, then ⊥ is derived. A branch containing ⊥ is said to be a

2.3. TABLEAU FOR MODAL LOGIC 22

closed branch. If no contradiction is found, and no more rules are applicable, then

the branch is referred to as an open branch. A closed branch is unsatisfiable. A

tableau with no open branches indicates that the formula is unsatisfiable. If a for-

mula is proved to be unsatisfiable, then its negation is valid. On the other hand,

a tableau containing an open branch with no more rules applicable is satisfiable.

Different logics are defined with different tableau rules but they all share com-

mon grounds. For instance, all tableaux must have a closure rule that derives

contradictions. The closure rule for modal logics is defined as:

(⊥)
s : ϕ , s : ¬ϕ

⊥
where s is a constant representing a world

Other than the contradiction rule, basic modal logic tableau is made-up of 4

expansion rules. These rules are defined in figure 2.8.

(∧)
s : ϕ ∧ φ
s : ϕ, s : φ

(¬∧)
s : ¬ (ϕ ∧ φ)

s : ∼ϕ | s : ∼φ

(�)
s : �ϕ, (s, t) :Rr

t : ϕ
(¬�)

s : ¬�ϕ
(s, t) : Rr, t : ∼ϕ

where t is new to the branch

Figure 2.8: Basic modal logic tableaux Calculus

In [SH06, HS02], the simulation of KΣ tableau where Σ is a sequence of symbols

chosen from the axioms T,D,B, 4, and 5 via first-order resolution has been

described based on the single-step tableaux calculi of Massacci [Mas98, Mas00].

Single-step tableau rules are also referred to as propagational rules because the

rules propagate formulae to worlds without asserting relational edges between

worlds. The reader can refer to the references for more on these rules.

In [CFdCGHg97], two kind of rules are identified. The first kind is propaga-

tional rules that are introduced by Massacci and also structural rules. Structural

rules do not add formulae but rather asserts relational edges between worlds.

Structural rules for axioms T,D,B, 4, and 5 can be defined as given in Fig-

ure 2.9.

2.3. TABLEAU FOR MODAL LOGIC 23

(T)
.

(s, s) : r
(D)

.

(s, t) : r

(B)
(s, t) : r

(t, s) : r
(4)

(s, t) : r, (t, u) : r

(s, u) : r
(5)

(s, t) : r, (s, u) : r

(t, u) : r

where t in rule (D) represents a new constant on the branch.

Figure 2.9: Structural tableau rules for axioms T, D, B, 4 and 5

(⊥)
s : ϕ, s : ¬ϕ

⊥

(∧)1

s : ϕ ∧ φ
s : ϕ

(∧)2

s : ϕ ∧ φ
s : φ

(¬∧)
s : ¬ (ϕ ∧ φ)

s :∼ϕ | s :∼φ

(¬[α])1

s : ¬[α]ϕ

(s, t) : α
(¬[α])2

s : ¬[α]ϕ

t :∼ϕ
([α])

(s, t) : α, s : [α]ϕ

t : ϕ

(^)
(s, t) : α^

(t, s) : α
(^)I

(t, s) : α

(s, t) : α^

(∧)r1
(s, t) : α ∧ β

(s, t) : α
(∧)r2

(s, t) : α ∧ β
(s, t) : β

(∧)rI
(s, t) : α, (s, t) : β

(s, t) : α ∧ β

(∨)r
(s, t) : α ∨ β

(s, t) : α | (s, t) : β
(∨)rI,1

(s, t) : α

(s, t) : α ∨ β
(∨)rI,2

(s, t) : β

(s, t) : α ∨ β

(contr)
s : ¬ (ψ ∧ ψ)

s :∼ψ
(contr)r

(s, t) : α ∨ α
(s, t) : α

(i) t in the rules (¬[α])1 and (¬[α])2 represents a new constant on the branch.

(ii) The rules (∧)rI , (∨)rI and (^)I have the side condition that the relational
formulae in the conclusions occur as subformulae of a box in the input
problem.

Figure 2.10: Tableaux Calculus for K(m)(∧,∨,^)

The tableaux calculus for K(m)(∧,∨,^) as defined in [Sch06, Sch08] is given

in Figure 2.10.

s and t in the rules of Figure 2.10 are constants representing worlds. The

closure rule (⊥) is applied when a world s contains a formula ϕ and its negation

¬ϕ. The conclusion of the rule is ⊥, which denotes the unsatisfiability of the

2.3. TABLEAU FOR MODAL LOGIC 24

branch.

For rules (∧)1 and (∧)2, when a world s is labelled with a formula of the form

ϕ∧ φ, this formula can be broken-down so that the world s is labelled with both

ϕ and φ.

(¬∧) is a branching rule. The separator | denotes that two branches are pro-

duced from applying the rule. Branching means that there are several possibilities

to consider. Hence, branching introduces non-determinism. For the application

of this rule, one branch would contain s :∼ϕ and the other would contain s :∼φ.

∼ denotes the complement, which means that if ϕ = ¬ψ, then ∼ϕ = ψ, otherwise,

∼ϕ = ¬ϕ.

The rule (¬[α])1 is applied when we have a world s labelled with ¬[α]ϕ. The

conclusion asserts an edge between s and a new world on the branch t. Rule

(¬[α])2 labels the new world t with the complement of the formula ϕ.

Rule [α] is applicable when we have two connected worlds (s, t) and which are

labelled with the relational formula α and also have that s is labelled with [α]ϕ.

In this case, the conclusion labels the successor t of s with ϕ.

^ denotes the converse operator. When the converse operator is applied on a

relational formula α^ that labels (s, t), then the conclusion labels (t, s) with α.

(∧)r is similar to (∧) but is applied on relational formulae.

(∨)r is another branching rule but on relational formulae where the formula

contains relational union. When the rule is applied, two branches are explored

with the different possibilities.

Relational rules have opposite introductory rules which are denoted by (o)I ,

where o here represents ^,∧ror∨r.

The contraction rules (contr) and (contr)r are simplification rules that are ap-

plied on propositional and relational formulae respectively whenever redundancy

is found, where branching maybe applied.

2.4. FORMULA NORMALIZATION 25

Usually in tableaux, there is a single rule for each of (∧) and (¬�). However,

for back-translation purposes, it is convenient to express each of them in two

rules instead of one. The reasons for this become apparent once the simulation

via first-order resolution is discussed in Chapter 4.

The rules (¬∧) and (∨)r as defined in Figure 2.10 follow standard tableau

branching rules. The tableau search using these rules is referred to in the lit-

erature as syntactic branching search. Syntactic branching has been proven to

be wasteful and highly inefficient. This is because unsatisfiable disjunctions can

reoccur when considering alternative branches and there is nothing to prevent

this from happening [Hor97, Hor98]. This problem is overcome by forcing the

branches to become disjoint. The branches become disjoint when the negation of

the unsatisfiable disjunct is added to alternative branches. This enhanced search

is referred to as semantic branching search.

When semantic branching is utilized, the branching rules are slightly changed

as in Figure 2.11.

(¬∧)
s : ¬(ϕ ∧ ψ)

s : ∼ϕ | s : ϕ, s : ∼ψ
(∨r) (s, t) : (α ∨ β)

(s, t) : α | (s, t) : ∼α, (s, t) : β

Figure 2.11: Tableau branching rules with semantic branching

2.4 Formula normalization

Lots of tableau algorithms described in the literature assume that input formu-

lae are in negation normal form (NNF). Formulae in negation normal form are

much simpler to describe but in practice and for efficiency reasons the input in

automated provers is not transformed to NNF [HHSS07].

Take for instance a formula ϕ where ϕ = (p ∧ q) ∧ ¬ (p ∧ q) . When this formula

is translated into negation normal form, it is transformed to (p ∧ q) ∧ (¬p ∨ ¬q) .

The original formula is clearly unsatisfiable because the subformula (p ∧ q) clashes

with ¬ (p ∧ q). Pushing the negation inwards to obtain the negation normal form

causes this obvious contradiction to become unclear. Figure 2.12 shows the two

2.4. FORMULA NORMALIZATION 26

tableaux derivations. The derivation to the left is of the original formula. The

derivation to the right is of its negation normal form. In the first derivation, a con-

tradiction is concluded right after applying the (∧) rule. Whereas in the second

derivation, the formula needs to break-down further and derive more inference

steps. Drawing contradictions and concluding the unsatisfiability of the problem

only becomes possible at the lowest level after branching and backtracking. The

example is fairly simple but if the formula is huge, then the overhead becomes

quite significant and wasteful. This shows why negation normal form regardless

of its simplicity is not the preferred form for satisfiability testing [HHSS07].

1. a : (p ∧ q) ∧ ¬(p ∧ q)
[∧:1]

��
2. a : (p ∧ q)

[∧:1]
��

3. a : ¬(p ∧ q)
[⊥:2,3]

��
4.⊥

1. a : (p ∧ q) ∧ (¬p ∨ ¬q)
[∧:1]

��
2. a : (p ∧ q)

[∧:1]

��
3. a : p

[∧:2]
��

4. a : q

[∧:2]
��

5. a : (¬p ∨ ¬q)
[∨:5]

uuu

zzuuuu [∨:5]
III

$$IIII

6. a : ¬p
[⊥:3,6]

��

8. a : ¬q
[⊥:4,8]

��
7.⊥

backtrack

GG

9.⊥

Figure 2.12: Comparison between two derivations of equivalent formulae

Using a minimum number of operators in formulae helps detect cases of early

contradictions and saves the overhead of unnecessary inference steps. Take for

instance the modal formula ϕ = ♦p ∧�¬p . The normal form of ϕ using the

rewrite rules in Table 2.13 is:

¬�¬p ∧�¬p

In this form, it becomes apparent that the formula is not satisfiable because of

2.4. FORMULA NORMALIZATION 27

the obvious contradiction between ¬�¬p and �¬p.

The motive for using basic operators only for expressing dynamic modal syntax

becomes clear; it helps in detecting contradictions faster. Normalization is used in

the context of this thesis as a preprocessing step for transforming modal formulae

by removing defined operators as removing double negation for simplification.

The process of normalization involves recursively applying a set of rewrite rules

until no more rules are applicable. Figure 2.13 lists down the rewrite rules for

removing defined operators.

formula rewrite rule

> ¬⊥
¬¬ϕ ϕ

ϕ↔ φ (ϕ→ φ) ∧ (φ→ ϕ)
ϕ→ φ ¬ϕ ∨ φ
ϕ ∨ φ ¬(¬ϕ ∧ ¬φ)

♦ϕ ¬�¬ϕ

Figure 2.13: Rewrite rules

Chapter 3

Resolution

This chapter gives an overview of the resolution calculus and modern frameworks

of resolution that are implemented in today’s theorem provers.

This chapter is organized as follows: Section 3.1 describes resolution as a refu-

tation system for first-order logic by exploiting a technique called unification.

Section 3.2 describes a refined resolution calculus called hyper-resolution, which

along with a process called structural transformation (discussed in Chapter 4)

simulates tableau systems for dynamic modal logic. Section 3.3 presents the

first-order resolution theorem prover SPASS [Wei05, WDF+09], which is used in

this project for the implementation of the tableau-resolution simulator.

3.1 First-order resolution

Resolution [Rob65] is a deduction system that just like tableaux is also based on

refutation. A refutation system proves the entailment of a formula ϕ by proving

that ¬ϕ is unsatisfiable.

The information in this section is based on Chapters 3 and 7 in [Fit90], Chapters

5 and 9 in [Kel97], and [Sch09a, Vor09].

Resolution requires the input it works on to be in a clausal form usually repre-

sented by sets of clauses. For first-order logic, the clausal form is obtained by ap-

plying several transformations to a first-order formula; transformation to conjunc-

tive normal form, Skolemization [Sko55] and structural transformation [Sch06].

28

3.1. FIRST-ORDER RESOLUTION 29

Skolemization ensures the clausal form is transformed to a quantifier free form.

The implicit assumption for any variable in this form is that it falls under a

universal quantifier.

Let Cls be a function transforming first-order formulae to clausal form. We

have that |= ϕ, iff Cls(¬ϕ) is unsatisfiable [Sch06]. This says that the entailment

of any first-order formula is proven if and only if the clausal form of its negation

is unsatisfiable.

The basic resolution calculus is based on two expansion/inference rules; the

resolution rule and the factoring rule. For propositional logic, the resolution rule

states that for two clauses A∨B and ¬B∨C, B and ¬B can be resolved together

and the result A ∨ C is obtained. The factoring rule is a form of contraction of

redundant clauses. Factoring is applicable to clauses of the form A ∨B ∨B and

the result A ∨B is obtained.

(¬A ∨B)
QQQQ

(¬B ∨ C)
mmmm

A

yyyyyyyyyyyy ¬C

���������������

(¬A ∨ C)

SSSSSSS

C
NNNNNN

⊥

Figure 3.1: Resolution derivation example

Figure 3.1 shows an example of how resolution is used on the following set of

clauses: {(¬A ∨ B), (¬B ∨ C), A,¬C}. The first line in the graph displays the

input clauses. The first two clauses are resolvable and upon resolution derive

(¬A ∨ C). Then, the result is resolved with the third input clause A and the

result C is obtained. Finally C is resolved with ¬C resulting in the empty clause

⊥. This means that the input set of clauses is unsatisfiable.

Predicate logic is more complicated than propositional logic because it contains

variables. We find that in order to apply resolution rules on predicate logic, we

must first apply substitutions. The idea is that in order for literals to become

resolvable, substitutions that make occurrences of literals identical must be used.

3.1. FIRST-ORDER RESOLUTION 30

This kind of substitution is referred to in the literature as unifying substitutions,

and the process is called unification [Kel97]. Applying unification with basic

resolution rules makes a sound and refutationally complete inference system for

full first-order logic and clause logic [Sch06]. However, it is found that imple-

menting resolution in its basic form makes the prover highly inefficient for most

cases [BG01]. The inefficiency comes from deriving inference steps that may have

been derived before and are therefore redundant.

Refinements of basic resolution provide better control over the application of

rules and the redundancy of inference steps. The ordering parameter � and

the selection function S are two ways to limit inference steps and enhance the

efficiency of theorem provers. With the ordering parameter, inference rules are

not applied unless on a maximal literal according to �. The selection function

overrides ordering. This means that negative literals selected by S are preferred

over literals that are possibly larger under the ordering � [Sch06]. The search

space with the restrictions implied by � and S becomes much smaller than the

search space of unrestricted resolution. A smaller search space enhances the

performance of the prover. The proof of soundness and completeness of ordered

resolution with selection can be found in [Sch09a].

In resolution expansion rules have the form:

N

N1 | ... | Nn

where N and Ni denote sets of clauses.

Figure 3.2 displays the definition of a resolution calculus with redundancy

elimination and splitting as given in [HS02, Sch06, Sch08]. We use the notation

Rred
sp to refer to this calculus.

The deduce rule represents the basic rules, which are ordered resolution and

factoring.

The delete and simplify rules are important because they eliminate redun-

dancies offering better management of the search space. However, redundancy

3.1. FIRST-ORDER RESOLUTION 31

Deduce:
N

N ∪ {C}
if C is a factor or resolvent of
premises in N

Delete:
N] {C}

N
if C is redundant with respect to N

Simplify:
N

(N \M) ∪M ′ if (N \M) ∪ M ′ is satisfiable when
N is satisfiable and every clause in
M is redundant with respect to (N\
M) ∪M ′

Split:
N] {C ∨D}

N ∪ {C} | N ∪ {D}
if C and D are variable-disjoint

alternatively
N] {C ∨D}

N ∪ {C} | N ∪ {¬C,D}
an alternative splitting rule referred
to as complement splitting

Resolvents and factors are computed with:

Ordered resolution:
C ∨ A ¬B ∨D

(C ∨D)σ

(i) where σ is the most general unifier of A and B such that Aσ = Bσ

(ii) no literal is selected in C, and Aσ is strictly � -maximal with respect to Cσ

(iii) ¬B is either selected, or ¬Bσ is maximal with respect to Dσ and no literal
is selected in D.

Ordered factoring:
C ∨ A ∨B
(C ∨ A)σ

(i) σ is the most general unifier of A and B

(ii) no literal is selected in C and Aσ is � -maximal with respect to Cσ

Figure 3.2: The resolution calculus Rred
sp

testing can be an expensive operation and thus, the implementation of redun-

dancy elimination is usually restricted to computable forms of redundancy elim-

ination [Sch06].

The symbol] in the split and delete rules denotes variable-disjoint union. In-

stead of refuting N ∪ {C ∨ D}, the prover splits the clause and refutes both

N ∪ {C} and N ∪ {D}. The alternative form of splitting known as complement

splitting refutes both N ∪ {C} and N ∪ {¬C,D}. Splitting is actually adapted

3.2. ORDERED HYPER-RESOLUTION 32

from tableau. Splitting introduces non-determinism. As in tableaux, splitting re-

quires backtracking. In tableaux, complement splitting is referred to as semantic

branching. It is a form of refined splitting that eliminates redundancies caused

by disjunction by making the two created branches disjoint [Li08].

3.2 Ordered hyper-resolution

Hyper-resolution is a refinement of the resolution calculus. In hyper-resolution,

positive clauses are resolved with non-positive clauses such that the conclusion

is always positive or the empty clause ∅ [GHS03]. The selection function S in

hyper-resolution selects exactly the set of all negative literals in any non-positive

clause [Sch06].

Hyper-resolution is defined with the following rule [HS02, Sch06, Sch08]:

C1 ∨ A1 ... Cn ∨ An ¬B1 ∨ ... ∨ ¬Bn ∨D
(C1 ∨ ... ∨ Cn ∨D)σ

where:

(i) σ is the most general unifier such that Aiσ = Biσ for every i, 1 ≤ i ≤ n

(ii) Aiσ is strictly�-maximal with respect to Ciσ and the Ci are positive clauses,

for every i, 1 ≤ i ≤ n

(iii) for every i, 1 ≤ i ≤ n,¬Bi is selected and D is a positive clause.

The factoring rule is given by:

C ∨ A ∨B
(C ∨ A)σ

(i) σ is the most general unifier of A and B

(ii) no literal is selected in C and Aσ is � -maximal with respect to Cσ

Figure 3.3 sketches a small example showing the difference between ordered

resolution and ordered hyper-resolution on the same set of clauses. Figure 3.3(a)

displays ordered resolution behaviour on the given set of clauses {¬B ∨ ¬C ∨
D,A1∨B,A2∨C}. Assuming that the literal ¬B in the first clause is selected by

the selection function S, it resolves with B from the second clause. The result is

3.3. THE RESOLUTION THEOREM PROVER SPASS 33

¬B+ ∨ ¬C ∨D
RRRRRRRRRR A1 ∨B

mmmmmmmmm
A2 ∨ C

����������������

¬C+ ∨D ∨ A1

QQQQQQQQQ

D ∨ A1 ∨ A2

(a) Ordered resolution inference

¬B+ ∨ ¬C+ ∨D
SSSSSSSSSSS A1 ∨B A2 ∨ C

ooooooooo

D ∨ A1 ∨ A2

(b) Ordered hyper-resolution inference

Figure 3.3: Comparison between (a) ordered resolution and (b) ordered hyper-
resolution

¬C ∨D ∨A1. The selection function now selects the only negative literal ¬C to

resolve with C from the third clause and the obtained result is D ∨ A1 ∨ A2. In

comparison with ordered hyper-resolution of Figure 3.3(b), the selection function

selects both negative literals of the first clause and resolves on both of them

simultaneously deriving the result in a single step. Hyper-resolution results in

fewer inference steps with only positive conclusions.

3.3 The resolution theorem prover SPASS

SPASS is a saturation-based automated resolution theorem prover for full first-

order logic with equality. SPASS is extended in this project to provide modal

logic tableau simulation via first-order resolution. There are other first-order

resolution provers such as E [Sch02] and Vampire [RV02] that could have been

used just as well. However, not only was SPASS essentially required by the

project’s supervisor, but it also included the following important points:

• The latest versions of SPASS includes the implementation of MSPASS [Sch99,

HS00], which is provided as an integral part. MSPASS translates modal

logic formulae, description logic formulae, and formulae of relational cal-

culus into first-order logic for deduction. This functionality of translating

modal logic formulae into first-order logic is needed for this project since

the goal is to simulate modal logic tableau via first-order resolution.

3.3. THE RESOLUTION THEOREM PROVER SPASS 34

• SPASS includes a sophisticated renaming module. The renaming module

applies structural transformation on first-order formulae. The importance

of structural transformation for this project is discussed in Chapter 4.

• SPASS already has an implementation of the hyper-resolution refinement

of the resolution calculus.

• When the input problem is satisfiable, SPASS can output a saturated-set

of clauses, which represent an open branch. This means that SPASS can

be used as a model finder, which is a useful reasoning service.

SPASS is operated from the commandline by running the command

SPASS [options] inputfile.dfg

inputfile.dfg is the input file containing the problem in DFG format.

The input format for SPASS is explained in detail in the input syntax man-

ual [CWT07] and a brief tutorial is present online [Wei06]. For the purpose of

this project, only relevant syntax is discussed this thesis. As mentioned earlier,

this project is interested in modal logics and therefore the syntax explained here

is relevant for the support added by MSPASS.

Figure 3.4 shows an example of an input problem in DFG syntax for illustration.

The syntax of a problem has three different parts; the description part, the

logical part, and the settings part. In Figure 3.4, the settings part begins at line

2 and ends at line 7. The parameters included are mandatory to any problem.

Status (line 5) indicates one of three possibilities: satisfiable, unsatisfiable, or

unknown. More parameters such as version, logic and date are optional to include.

The logical part has three sections:

• list of symbols (lines:9-12)

– predicates[]. is used to define predicate symbols as pairs specifying

the name of the predicate and its arity as (symbol,arity)

3.3. THE RESOLUTION THEOREM PROVER SPASS 35

1. begin_problem(Example_1).

2. list_of_descriptions.

3. name ({* Problem: Example 1*}).

4. author ({* Rawan AlBarakati *}).

5. status(unknown).

6. description ({* -([r](p \/ <r> p) /\ -p) *}).

7. end_of_list.

8.

9. list_of_symbols.

10. predicates [(r,0), (p,0), (R,2)].

11. translpairs [(r,R)].

12. end_of_list.

13.

14. list_of_special_formulae(axioms ,EML).

15. formula(forall ([x], R(x,x)),reflexivity). % R is reflexive

16. % rel_formula(implies(id,r)). % r is reflexive

17. end_of_list.

18.

19. list_of_special_formulae(conjectures ,EML).

20. prop_formula(implies(box(r,p),p)).

21. end_of_list.

22.

23. list_of_settings(SPASS)

24. {*

25. set_flag(PGiven ,0).

26. set_flag(DocProof ,1).

27. set_flag(Auto ,0).

28. set_flag(IOHy ,1).

29. *}

30. end_of_list.

31. end_problem.

Figure 3.4: Input problem example in DFG syntax

– translpairs[]. is used to create a link between different symbols.

When the propositional predicate is translated into first-order logic,

the paired symbol is used instead of introducing a new one. For the

example in the figure, r is paired up with R. r denotes a relational vari-

able in modal logic, whereas R denotes the corresponding accessibility

relation.

• list of special formulae(axioms,EML) (lines:14-17)

This section carries declarations of axiom formulae according to their type.

• list of special formulae(conjectures,EML) (lines:19-21)

Again, formulae are declared in this section according to their type.

The input problem is formed from the conjunction of axioms and negated

conjectures.

3.3. THE RESOLUTION THEOREM PROVER SPASS 36

A formula in first order logic is declared with formula(). In the example,

line 15 contains a first order formula declaration falling into the axioms part.

This formula imposes the reflexivity property on the accessibility relation R.

Remember that R is defined as the translation pair of r found in the modal

formula. Formulae can have associated labels. The first-order formula imposing

reflexivity in the example is labelled with its property.

--------------------------SPASS -START -----------------------------

1. Input Problem:

2. 1[0: Inp] || -> R(U,U)*.

3. 2[0: Inp] || P(skc1)* -> .

4. 3[0: Inp] || R(skc1 ,U)* -> P(U).

5. This is a first -order Horn problem without equality.

6. This is a problem that has , if any , a finite domain model.

7. There are no function symbols.

8. Axiom clauses: 1 Conjecture clauses: 2

9. Inferences: IOHy=1

10. Reductions:

11. Extras : No Input Saturation , Dynamic Selection , Full Splitting , Full

Reduction , Ratio: 5, FuncWeight: 1, VarWeight: 1
12. Precedence: nequal > div > id > r > s > t > p > q > w > v > a > b > c > d >

R > S > P > Q > skc0 > skc1
13. Ordering : KBO

14. Processed Problem:

15.

16. Worked Off Clauses:

17.

18. Usable Clauses:

19. 2[0: Inp] || P(skc1)* -> .

20. 1[0: Inp] || -> R(U,U)*.

21. 3[0: Inp] || R(skc1 ,U)* -> P(U).

22. SPASS V 3.5

23. SPASS beiseite: Proof found.

24. Problem: example1.dfg

25. SPASS derived 2 clauses , backtracked 0 clauses , performed 0 splits and kept

4 clauses.
26. SPASS allocated 39989 KBytes.

27. SPASS spent 0:00:00.12 on the problem.

28. 0:00:00.05 for the input.

29. 0:00:00.03 for the FLOTTER CNF translation , of which

30. 0:00:00.00 for the translation from EML to FOL.

31. 0:00:00.00 for inferences.

32. 0:00:00.00 for the backtracking.

33. 0:00:00.00 for the reduction.

34.

35. Here is a proof with depth 2, length 5 :

36. 1[0: Inp] || -> R(U,U)*.

37. 2[0: Inp] || P(skc1)* -> .

38. 3[0: Inp] || R(skc1 ,U)* -> P(U).

39. 4[0: OHy :3.0 ,1.0] || -> P(skc1)*.

40. 5[0: OHy :2.0 ,4.0] || -> .

41. Formulae used in the proof : reflexivity conjecture0

--------------------------SPASS -STOP ------------------------------

Figure 3.5: SPASS ouput

3.3. THE RESOLUTION THEOREM PROVER SPASS 37

A boolean type formula is declared with either prop formula used for proposi-

tional modal logics or concept formula used for declaring concepts of description

logics. Line 20 is an example of a propositional formula.

A relational formula is declared with rel formula for relations in modal logics

or role formula for relations in description logics. Line 21 is an example of a

relational formula which makes r reflexive. Note that the line starts with a (%),

which causes the line to be treated as a comment.

For the implementation of the tableau-resolution prover of this project, only

first-order formulae are expected in the axioms part to impose relational con-

ditions on modal logic frames, and in the conjectures part only propositional

formulae are expected with limited relational operators.

The settings part carries flag settings for the concerned system. Each flag can

be declared only once by the line set flag(flag,value). This part is com-

pletely optional, and the flags can alternatively be declared in the commandline

as -flag=value.

For any problem, the settings part is optional but the other two parts are

mandatory.

Figure 3.5 is the output from running the example of Figure 3.4. Lines 1-4

is the input problem as a list of clauses after translation to first-order logic of

the modal formulae and transformation to clausal form. The star * denotes that

the literal is maximal according to the specified or default ordering. Lines 5-

8 are analysis information of the problem by SPASS. Lines 9-13 are based on

flag settings. In our problem, we specified the inference type as ordered hyper

resolution by setting on the option IOHy=1.

Next comes the answer to the problem. The most important part in the output

is in line 23 SPASS beiseite: Proof found. This line specifies the problem

result. Since the formula in the conjectures part is negated for refutation, proof

found denotes that the problem is actually valid. The proof is output in lines 35-

40. Line 41 specifies the formula lables contributing to the proof. If the result

says Completion found, then it means that SPASS has found an open branch

3.3. THE RESOLUTION THEOREM PROVER SPASS 38

making up a model. When switching on the DocProof flag setting, if completion

is found, SPASS outputs a model.

Chapter 4

Simulation of tableaux via

first-order resolution

This chapter is an overview on how tableau simulation is achieved using hyper-

resolution on range-restricted clauses obtained from structural transformation.

The rest of this chapter is structured as follows: Section 4.1 explains structural

transformation for first-order logic and how the introduced predicates can be

linked to modal formulae. Papers following this approach assume the input is in

negation normal form. We have seen that negation normal form is not suitable due

to efficiency reasons. However, the approach in this section is explained because

it will be referred to in consequent chapters. Section 4.2 explains a special kind

of structural transformation specifically introduced for dynamic modal formulae.

The way definitions are introduced in this version result in a more efficient and

effective derivation. Section 4.3 illustrates with a practical example how the

simulation is done using the structural transformation described in Section 4.2.

4.1 Structural transformation for first-order logic

Structural transformation (also known as renaming) 1 involves the replacement

of subformulae with fresh predicates. For a formula ψ ∨ φ, one can introduce

a new symbol Q∨ that replaces ψ ∨ φ such that Q∨ is satisfiable if and only if

Q∨ ∧ (Q∨ ↔ (ψ ∨ φ)) is satisfiable.

1Structural transformation and renaming will be used interchangeably throughout this dis-
sertation

39

4.1. STRUCTURAL TRANSFORMATION FOR FIRST-ORDER LOGIC 40

An optimised version of structural transformation further takes the polarity of

the replaced subformula into account. The polarity of a subformula in first-order

logic can be positive, negative, or have zero polarity. Following [Sch09b], if a

formula ψ contains neither ↔ nor →, a subformula φ:

• has a positive polarity in ψ if it occurs under an even number of negation

symbols.

• has a negative polarity in ψ if it occurs under an odd number of negation

symbols.

• has zero polarity in ψ if it occurs under both positive and negative scopes.

First order structural transformation is described in [HdNS00, HS02] as follows:

Let λ denote the position of a first-order subformula in ϕ. Pos(ϕ) is the set of all

the positions of subformulae of ϕ. ϕ|λ denotes the subformula of ϕ at position λ

and ϕ[ψ 7→ λ] is the result of replacing the subformula in ϕ at position λ with ψ.

Let Λ ⊆ Pos(ϕ). Each element λ of Λ is associated with a fresh predicate

symbol Qλ and a literal Qλ(x1, ..., xn), where x1, ..., xn are free variables of ϕ|λ.

Let

Def+λ (ϕ) = ∀x1...xn(Qλ(x1, ..., xn)→ ϕ|λ)

Def−λ (ϕ) = ∀x1...xn(ϕ|λ→ Qλ(x1, ..., xn))

The definition of Qλ is the formula

Defλ (ϕ) =


Def+λ (ϕ) if ϕ|λ has positive polarity

Def−λ (ϕ) if ϕ|λ has negative polarity

Def+λ (ϕ) ∧Def−λ (ϕ) if ϕ|λ has zero polarity

The corresponding clauses are called definitional clauses. Although the result

of the optimized structural transformation is not logically equivalent to the orig-

inal formula, it preserves satisfiability, which is sufficient for resolution theorem

proving [NW01].

In [HS02], the assumption is that formulae are in negation normal form. Nega-

tions in a formula in negation normal form only occur in front of predicates. The

consequence is that the polarity of all introduced symbols is positive. Thus, we

4.2. STRUCTURAL TRANSFORMATION FOR DYNAMIC MODAL LOGIC41

can say that Defλ (ϕ) = Def+λ (ϕ). The main advantage of introducing new pred-

icates is to link the predicates to original modal formulae so that the connection

is not lost. One can manage this connection by introducing fresh predicates only

for subformulae corresponding to non-literal subformulae of the original modal

formula [HdNS00]. A mapping function is used for this purpose. For a given

modal formula ϕ and its translation into first-order logic ϕ′ = Π(ϕ), the mapping

DefΛ is applied with following definition from [HdNS00]:

Λ = {λ | there is a non-literal subformula ϕ|λ′ of ϕ and ϕ′|λ = Π(ϕ|λ′)}.

For example, let us take the first-order translation of the modal formula

[r1][r2](p ∧ ¬q) that was previously obtained in Figure 2.7:

∃x.∀y. (Rr1(x, y)→ (∀ z Rr2(y, z)→ (Pp(z) ∧ ¬Pq(z))))

The structural transformation of formulae corresponding to original modal for-

mulae results in the conjunction of the following clauses:

• ∃x.Q[r1][r2](p∧¬q)(x)

• ∀x.Q[r1][r2](p∧¬q)(x)→ (∀y.Rr1(x, y)→ Q[r2](p∧¬q)(y))

• ∀x.Q[r2](p∧¬q)(x)→ (∀y.Rr2(x, y)→ Qp∧¬q(y))

• ∀x.Qp∧¬q(x)→ (Pp(x) ∧Q¬q(x))

• ∀x.Q¬q(x)→ ¬Pq(x)

Notice that not all subformulae are replaced with a predicate. For instance, we

do not introduce a new predicate to replace Rr1(x, y) → Q[r2](p∧¬q)(y)) because

this subformula does not have a modal logic match.

4.2 Structural transformation for dynamic modal

logic

[Sch06, SH07, Sch08] are used as the main references for this section. In the men-

tioned references, Schmidt and Hustadt used a structural transformation version

specifically introduced for dynamic modal logics. The previous papers [HdNS00,

HS99, HS98a, HS02] used the structural transformation of Section 4.1. The latter

references assumed problem formulae are in negation normal form. Dropping this

4.2. STRUCTURAL TRANSFORMATION FOR DYNAMIC MODAL LOGIC42

assumption makes the classical structural transformation introduce negative def-

initions for subformulae under negative polarity. The definitions that we would

obtain are not suitable for the hyper-resolution framework that we would like to

use. Let us see why this is the case by considering a simple example:

Let ϕ = ¬ (p ∧ q). The first-order translation to the formula is ∃x.¬(Pp(x) ∧
Pq(x)).

By applying structural transformation we get:

∃x.Q¬(x)

∧ ∀x.Q¬(x)→ ¬Q∧(x)

∧ ∀x. (Pp(x) ∧ Pq(x))→ Q∧(x)

The clausal form gives the following set:

{ Q∗¬(a), ¬Q+
¬ (x) ∨ ¬Q+

∧ (x), ¬Pp(x)+ ∨ ¬Pq(x)+ ∨Q∧(x) }

Hyper-resolution for this set of clauses does not produce any inference steps

because it needs both Q+
¬ (x) and Q+

∧ (x) of the second clause to occur positively in

order to make an inference step. In which case, the empty set would be derived

and the derivation would stop. In tableau however, there is a (¬∧) rule that

needs to be applied and branching to take place. It is not sufficient to end the

derivation this early and conclude that the formula is satisfiable because this may

not be the case.

The version of structural transformation introduced in [Sch06, SH07, Sch08]

solves this problem by introducing three definitions for each formula; one for

the formula itself, one for the formula’s complement, and a third that states

the two formulae are complements of each other. Also, definitions are created

for relational formulae. The assumption here is that all occurrences of double

negation have been eliminated. If ψ = ¬φ, then ∼ψ = φ. Otherwise, ∼ψ = ¬φ.

Following the mentioned references, let Def′ be a transformation function for

dynamic modal formulae and relational formulae defined as follows:

4.2. STRUCTURAL TRANSFORMATION FOR DYNAMIC MODAL LOGIC43

Def′(ψ) is the definition of Qψ, where Qψ is a new predicate symbol uniquely

associated with the modal formula ψ.

Def′(ψ) =def ∀x(Qψ(x)→ π′(ψ, x))

∧∀x(Q∼ψ(x)→ π′(∼ψ, (x))

∧∀x(Qψ(x)→ ¬Q∼ψ(x)),

Def′(α) is the definition of Rα, where Rα is a new relational symbol uniquely

associated with the relational formula α.

Def′(α) =def ∀x, y. (Rα(x, y)→ τ ′(α, x, y))

∧∀x, y. (τ ′(α, x, y)→ Rα(x, y)).

The functions π′and τ ′ are translation functions of modal and relational formu-

lae to first order logic. They are defined in [Sch08] as given by Figure 4.1 where

z is any variable distinct from x.

π′(⊥, x) = ⊥
π′(¬⊥, x) = ¬Q⊥(x)
π′(p, x) = >

π′(¬p, x) = ¬Qp(x)
π′(ψ ∧ φ, x) = Qψ(x) ∧Qφ(x)

π′(¬(ψ ∧ φ), x) = Q∼ψ(x) ∨Q∼φ(x)
π′([α]ψ, x) = ∀z(Rα(x, z)→ Qψ(z))

π′(¬[α]ψ, x) = ∃z(Rα(x, z) ∧Q∼ψ(z))

τ ′(r, x, y) = Rr(x, y)
τ ′(α ∧ β, x, y) = Rα(x, y) ∧Rβ(x, y)
τ ′(α ∨ β, x, y) = Rα(x, y) ∨Rβ(x, y)
τ ′(α^, x, y) = Rα(y, x)

Figure 4.1: Definition of the translation mappings π′ and τ ′

4.2. STRUCTURAL TRANSFORMATION FOR DYNAMIC MODAL LOGIC44

Let ϕ′ be the result of applying structural transformation to a modal formula ϕ

as per the definition of Def′. Let N be the set of clauses obtained from applying

conjunctive normal form transformation, inner Skolemization, and clausification

on ϕ′. Every clause in N is either a unit clause Qϕ(a), where a is a Skolem

constant, or represents one of the definitional clauses of Figure 4.2. The set of

clauses N preserves the satisfiability of the original formula ϕ [Sch08].

Subformula θ Definitional clauses associated with θ

⊥ ¬Q⊥(x)+

ψ ∧ φ ¬Qψ∧φ(x)+ ∨Qψ(x)
¬Qψ∧φ(x)+ ∨Qφ(x)

¬(ψ ∧ φ) ¬Q¬(ψ∧φ)(x)+ ∨Q∼ψ(x) ∨Q∼φ(x)
[α]ψ ¬Q[α]ψ(x)+ ∨ ¬Rα(x, y)+ ∨Qψ(y)
¬[α]ψ ¬Q¬[α]ψ(x)+ ∨Rα(x, f¬[α]ψ(x))

¬Q¬[α]ψ(x)+ ∨Q∼ψ(f¬[α]ψ(x))
α ∧ β ¬Rα∧β(x, y)+ ∨Rα(x, y)

¬Rα∧β(x, y)+ ∨Rβ(x, y)
Rα∧β(x, y) ∨ ¬Rα(x, y)+ ∨ ¬Rβ(x, y)+

α ∨ β ¬Rα∨β(x, y)+ ∨Rα(x, y) ∨Rβ(x, y)
Rα∨β(x, y) ∨ ¬Rα(x, y)+

Rα∨β(x, y) ∨ ¬Rβ(x, y)+

α^ ¬Rα^(x, y)+ ∨Rα(y, x)
Rα^(x, y) ∨ ¬Rα(y, x)+

Figure 4.2: Definitional clausal forms for K(m)(∧,∨,^)

Figure 4.2 shows all possible definitional clausal forms for K(m)(∧,∨,^) as

given in [Sch08]. Negative literals are marked by + which denotes that they are

selected by the selection function S.

Let Ξ be a structural transformation function, where Ξ(ϕ) = ∃xQϕ(x)∧Def′(ϕ).

By applying Ξ to ϕ = ¬ (¬ ∧� (r1, p))∧� (r1 ∨ r2,¬p)∧¬q, we get the following

formula:

4.2. STRUCTURAL TRANSFORMATION FOR DYNAMIC MODAL LOGIC45

Ξ(ϕ) = ∃x.Q(∧1)(x)

∧ ∀x.Q(∧1)(x)→ (Q(¬∧2)(x) ∧Q(�1)(x) ∧Q(¬q)(x))

∧ ∀x.Q(¬∧1)(x)→ (Q(∧2)(x) ∨Q(¬�1)(x) ∨Qq(x))

∧ ∀x.Q(∧1)(x)→ ¬Q(¬∧1)(x)

∧ ∀x.Q(¬∧2)(x)→ (Qq(x) ∨Q(¬�2)(x))

∧ ∀x.Q(∧2)(x)→ (Q(¬q)(x) ∧Q(�2)(x))

∧ ∀x.Q(¬∧2)(x)→ ¬Q(∧2)(x)

∧ ∀x.Qq(x)→ >
∧ ∀x.Q(¬q)(x)→ ¬Qq(x)

∧ ∀x.Qq(x)→ ¬Q(¬q)(x)

∧ ∀x.Q(¬�2)(x)→ (∃z.(Rr1(x, z) ∧Q(¬p)(z)))

∧ ∀x.Q(�2)(x)→ (∀z.(Rr1(x, z)→ Qp(z)))

∧ ∀x.Q(¬�2)(x)→ ¬Q(�2)(x)

∧ ∀x.Qp(x)→ >
∧ ∀x.Q¬p(x)→ ¬Qp(x)

∧ ∀x.Qp(x)→ ¬Q(¬p)(x)

∧ ∀x.Q(�1)(x)→ (∀z.(R∨r(x, z)→ Qp(z)))

∧ ∀x.Q(¬�1)(x)→ (∃z.(R∨r(x, z) ∧Q(¬p)(z)))

∧ ∀x.Q(�1)(x)→ ¬Q(¬�1)(x)

∧ ∀x, y. R∨r(x, y)→ (Rr1(x, y) ∨Rr2(x, y))

∧ ∀x, y. (Rr1(x, y) ∨Rr2(x, y))→ R∨r(x, y)

Figure 4.3 represents the clausal set of the formula, which will be used for

illustration throughout the rest of this chapter.

4.3. SIMULATING TABLEAU FOR K(M)(∧,∨,^) 46

1.Q(∧1)(a) 2.¬Q(∧1)(x)+ ∨Q(¬∧2)(x)
3.¬Q(∧1)(x)+ ∨Q(�1)(x) 4.¬Q(∧1)(x)+ ∨Q(¬q)(x)
5.¬Q(¬∧1)(x)+ ∨Q∧2(x) ∨Q(¬�1)(x) ∨Qq(x) 6.¬Q(∧1)(x)+ ∨ ¬Q(¬∧1)(x)+

7.¬Q(¬∧2)(x)+ ∨Qq(x) ∨Q(¬�2)(x) 8.¬Q(∧2)(x)+ ∨Q(¬q)(x)
9.¬Q(∧2)(x)+ ∨Q(�2)(x) 10.¬Q(¬∧2)(x)+ ∨ ¬Q(∧2)(x)+

11.¬Q(¬q)(x)+ ∨ ¬Qq(x)+ 12.¬Qq(x)+ ∨ ¬Q(¬q)(x)+

13.¬Q(¬�2)(x)+ ∨Rr1(x, f(¬�2)(x)) 14.¬Q(¬�2)(x)+ ∨Q(¬p)(f(¬�2)(x))
15.¬Q(�2)(x)+ ∨ ¬Rr1(x, y)+ ∨Qp(y) 16.¬Q(¬�2)(x)+ ∨ ¬Q(�2)(x)+

17.¬Q(¬p)(x)+ ∨ ¬Qp(x)+ 18.¬Qp(x)+ ∨ ¬Q(¬p)(x)+

19.¬Q(�1)(x)+ ∨ ¬R∨r(x, y)+ ∨Qp(y) 20.¬Q(¬�1)(x)+ ∨R∨r(x, f(¬�1)(x))
21.¬Q(¬�1)(x)+ ∨Q(¬p)(f(¬�1)(x)) 22.¬Q(�1)(x)+ ∨ ¬Q(¬�1)(x)+

23.¬R∨r(x, y)+ ∨Rr1(x, y) ∨Rr2(x, y) 24.¬Rr1(x, y)+ ∨R∨r(x, y)
25.¬Rr2(x, y)+ ∨R∨r(x, y)

Figure 4.3: Transformation of Ξ(ϕ) into clausal form

4.3 Simulating tableau for K(m)(∧,∨,^)

This section describes how hyper-resolution and the range-restricted clauses ob-

tained in Section 4.2 can simulate ground semantic tableau for dynamic modal

logic following [Sch06, Sch08].

Let N be the set of clauses obtained in Figure 4.3. These clauses and all

clauses obtained from the structural transformation of Section 4.2 are range-

restricted. Variables in range-restricted clauses must occur in the negative part of

the clause [GHS03]. All positive range-restricted clauses are ground. This means

that hyper-resolution and factoring inference steps on range-restricted clauses

always produce positive ground clauses [Sch08]. As a consequence, factoring

and splitting in hyper-resolution are always applied to positive ground non-unit

clause [Sch08].

In Hsp, which denotes hyper-resolution with splitting, the order of the appli-

cation of rules on each clause is: factoring, then splitting, and last comes the

hyper-resolution rule. As a result of this ordering, all non-unit ground clauses

are first factored or split into a single unit clause before it is used as a positive

premise in any hyper-resolution inference step [Sch08].

4.3. SIMULATING TABLEAU FOR K(M)(∧,∨,^) 47

Ground unit clauses resulting from applying inference rules on dynamic modal

formulae as defined in Section 2.2 are associated with either a relational formula

α or dynamic modal formula ϕ. Qϕ(a) where a is a Skolem constant translates

to the associated labelled formula {a : ϕ}. Similarly, {Ra(a, b)} translates to

(a, b) : α.

Every definitional clause in Figure 4.2 has a corresponding expansion or closure

tableau rule as per the tableau calculus defined in Figure 2.10. For any definitional

clause, the negative literals correspond to the set of premises and the positive

literals correspond to the conclusions of a tableau rule. When there is more than

one positive literal in the clause, they are separated by | to represent tableau

disjunction. The variables of the clause are substituted with constants. Take as

an example the definitional clause of (¬ψ ∧ φ):

¬Q¬(ψ∧φ)(x)+ ∨Q∼ψ(x) ∨Q∼φ(x), becomes the (¬∧)rule :
s : ¬(ψ ∧ φ)

s : ∼ψ | s : ∼φ

The only tableau rule that is not obtained in this way is the contraction rule

and it corresponds to the factoring rule in hyper-resolution.

The tableau calculus for K(m)(∧,∨,^) has the relational introduction rules

(∧)rI , (∨)rI and (^)I . These rules have a side condition that they must not by

applied unless the conclusion formula occurs in the input problem. Notice that

Def′ (a) has two parts:

• ∀x, y.(Rα(x, y)→ τ ′(α, x, y)), which creates definitional clauses correspond-

ing to tableau relational rules.

• ∀x, y.(τ ′(α, x, y)→ Rα(x, y)), which creates definitional clauses correspond-

ing to relational introduction rules.

Since the definitions are only introduced for relational formulae occurring in the

input problem, the mentioned rules’ side condition is satisfied in hyper-resolution

derivations.

When hyper-resolution is performed on the range-restricted clauses of Fig-

ure 4.2, then every tableau rule application is simulated by one or two hyper-

resolution inference steps [Sch08].

4.3. SIMULATING TABLEAU FOR K(M)(∧,∨,^) 48

26. [OHy:1, 2] Q(¬∧2)(a)
27. [OHy:1, 3] Q(�1)(a)
28. [OHy:1, 4] Q(¬q)(a)
29. [OHy:7, 26] Qq(a) ∨Q(¬�2)(a)
30. [Spt :29.0] Qq(a) 32. [Spt :29.1] Q(¬�2)(a)
31. [OHy:12, 28, 30] ∅ 33. [OHy:13, 32] Rr1(a, f(¬�2)(a))

34. [OHy:14, 32] Q(¬p)(f(¬�2)(a))
35. [OHy:24, 33] R∨r(a, f(a))
36. [OHy:19, 27, 35] Qp(f(a))
37. [OHy:18, 34, 36] ∅

Figure 4.4: Using hyper-resolution Hsp on N from Figure 4.3

Figure 4.4 shows the hyper-resolution derivation with splitting denoted by

Hsp on the set of clauses N that was produced previously in Figure 4.3.

The modal tableau formula associated with the symbol Q(∧1) is the original

formula ϕ. The ground clause as a whole corresponds to the pair {a : ϕ}, which

represents the root node in a tableau derivation.

The Hsp derivation starts with an inference with the only positive clause

Q(∧1)(a). The first derivation resolves 1.Q(∧1)(a) with 2.¬Q(∧1)(x)+ ∨ Q(¬∧2)(x)

by applying the substitution σ = {x/a}.

Clause number 2 corresponds to the (∧) rule in tableau. This correspondence

becomes clear once one thinks of negative literals as the set of premises and the

positive ones as the set of conclusions. The following two derivations (number

27 and 28) are similar to the first derivation and are the application of the same

rule.

Since the resolution inference steps for a conjunction depends on the number

of conjuncts, it becomes clear why the tableau (∧) rule, and similarly the (¬�),

is broken down into two rules.

In the case of the negated conjunction (¬∧), the hyper-resolution inference

is followed by splitting. Each split literal represents the beginning of a new

4.3. SIMULATING TABLEAU FOR K(M)(∧,∨,^) 49

branch as splitting simulates tableau branching. Clause number 29 is an inference

step resulting from negated conjunction. Recall the order of inference rules in

Hsp, which implies that clause 29 must first be split before applying the hyper-

resolution rule. Clauses 30 and 32 originate from splitting clause 29. This results

in two branches in the tree-like derivation simulating tableau.

The left branch is explored first. The two clauses 28.Q(¬q)(a) and 30.Qq(a)

are resolved with 11.¬Q(¬q)(x)+ ∨ ¬Qq(x)+ in one hyper-resolution step. The

conclusion is the empty set ∅ . This corresponds to deriving a contradiction in

a tableau branch between a : q and a : ¬q by applying the closure rule and

concluding ⊥. Just like tableau, this branch is now closed and the second branch

is explored.

The split literal from clause 29 makes the clause 32.Q(¬�2)(a). This clause

is resolved with two input clauses in two inference steps. It resolves once with

13.¬Q(¬�2)(x)+∨Rr1(x, f(¬�)(x)) and produces Rr1(a, f(¬�)(a)). Then it resolves

with 14.¬Q(¬�2)(x)+ ∨ Q(¬p)(f(¬�)(x)) and produces Q(¬p)(f(¬�)(a)). These two

steps simulate the two (¬�) rules in tableau.

Since the relational formula r1 ∨ r2 is present in the original modal formula,

then the (∨rI) rule is applicable on r1. We find that clause 35 is the result of the

introduction rule. Notice that (^r) rule on the other hand is not applied.

With the new conclusion derived from the relational introduction rule, another

inference step becomes possible. The inference step resolves 19.¬Q(�1)(x)+ ∨
¬R∨r(x, y)+ ∨Qp(y) with clauses 27 and 35 to produce the result in clause 36.

Finally, clauses 18, 34 and 46 resolve together to conclude the empty set ∅. This

step represents the application of the closure rule in tableau. By this inference

steps the derivation ends.

With this example we have practically seen how tableau is simulated step-by-

step via first-order hyper-resolution and dynamic modal logic structure transfor-

mation.

Chapter 5

Using SPASS as a Tableau

Resolution Prover

In this chapter I describe how I extended the resolution theorem prover SPASS

so that it behaves like a tableau theorem prover.

There rest of this chapter is organized as follows: Section 5.1 describes the

preprocessing steps needed on input dynamic modal logic formulae but the trans-

lation to first-order logic takes place. A formula is transformed into a normal form

by iteratively applying a set of rewrite rules. Section 5.2 describes how modal

formulae and their first-order translations are linked together in a form of a data

structure through binding their pointers. Section 5.3 gives a solution that makes

use of the structural transformation presented in Section 4.1 rather than the new

version described in Section 4.2. Section 5.4 describes how inference steps output

by SPASS are translated into tableau derivation steps. In Section 5.5, explanation

is given on the presentation of a tableau tree-like derivation by indenting steps

to represent branches. Finally, Section 5.7 explains a logical problem caused by

inference steps order and the solution to the problem.

5.1 Normalisation of input

In SPASS, all input formulae are first translated to first-order logic. Input for-

mulae are passed to the EML (extended modal logic) module for this process.

We have seen in Section 2.4 that it is better to have modal formulae normal-

ized by removing defined operators. Removing defined operators enables early

50

5.2. ASSOCIATING MODAL FORMULAE WITH FIRST-ORDER TRANSLATIONS51

detection of contradictions in a tableau. So before translation to first-order logic

takes course, a formula is passed to a normalisation method that I have added.

A formula in this method goes through a number of transformation steps:

1. Removal of ↔ and →
The removal of equivalence ↔ and implication → is achieved by a call to a

method already available in SPASS. Every subformula of the form ϕ↔ φ,

the subformula is replaced with (ϕ → φ) ∧ (φ → ϕ). Then, for every

subformula of the form ϕ → φ, it is substituted with ¬ϕ ∨ φ. When the

formula is returned back by the method, it is equivalence and implication

free.

2. Removal of ∨ and 〈α〉
The implementation of the method that removes ∨ and 〈α〉 is similar to

SPASS’s implementation of the removal of ↔ and →. A vector is used to

maintain propositional subformulae. Every subformula of the form ψ ∨φ is

replaced with ¬ψ ∧ ¬φ. Every formula of the form 〈α〉ψ is replaced with

¬[α]¬ψ. By the end of this step, all occurrences of 〈α〉 are eliminated and

all occurrences of ∨ are over relational formulae.

3. Removal of double negation

This is a simple step that removes occurrences of ¬¬, which are mostly

produced by the elimination of the defined symbols in the previous two

steps.

4. Removal of obvious redundancy

By obvious redundancies I mean the occurrences of ϕ ∧ ϕ and α ∧(∨) α,

where α is a relational formula. A formula of the form ϕ ∧ ϕ is reduced to

ϕ, and similarly α ∧(∨) α is reduced to α.

5.2 Associating modal formulae with first-order

translations

The simulation of modal tableau derivation is done via first-order resolution.

This means that we will need to translate first-order derived clauses back to

the modal form. Hence, it is important to store pointers to the subformulae of

original modal formulae. In SPASS, the modal formulae are destructively changed

5.2. ASSOCIATING MODAL FORMULAE WITH FIRST-ORDER TRANSLATIONS52

when translated to first-order formulae. To overcome this problem, I created two

hashmaps: one for storing pointers to propositional formulae and the other for

storing pointers to relational formulae. We will find that we will often have to

check if the subformula is a relational formula or a propositional formula. Saving

each kind in a distinct hashmap is thus beneficial as it facilitates knowing the

origin of the subformula.

In a hashmap, each entry is identified by a unique key. An entry in a hashmap

stores the pointer to a subformula of the original modal logic formula. The key

to this entry is the pointer to the corresponding first-order translation as shown

in Figure 5.1.

In the figure, k denotes the key of the hashmap entry and v denotes the value.

The dashed triangle to the left represents a first-order formula. The inner triangle

is a first-order subformula. The black circles are the keys to the hashmap values

but are also pointers to first-order subformulae. Hashmap values are denoted by

the white circles, which are pointers to subformulae of the original modal logic

formula. Modal logic formulae are represented by the triangles to the right.

This solution enables retrieving the the back-translation of any first-order for-

mula by simply passing its pointer to the hashmap retrieve function. If there is a

key in the hashmap, which is the same as the passed pointer, the function sends

back the pointer to the corresponding modal formula.

�
�

�
�

�
�

�
�

�

*
*

*
*

*
*

*
*

* k v

�
�

�
�

�
�

�
�

�

*
*

*
*

*
*

*
*

*

: :

�������

,,,,,,, •∀y(Rr(x,y)..)oo ◦ [r]ψ //

�������

,,,,,,,

• // ◦
: :

______ ______

//

Figure 5.1: Mapping first-order translations to original modal formulae

The association is done during the translation of modal formulae to first-order

formulae by first creating a mirror copy of the original modal formula passed to

5.3. A NEW APPROACH TO RENAMING 53

the translation method. I updated the translation method so that it also accepts

as input the modal logic formula copy. The modal logic formula and its copy are

then traversed simultaneously. Whenever a first-order formula is constructed to

replace a modal formula in a destructive way, both first-order and modal logic

formula pointers are stored in one of the two hashmaps according to the type of

the modal logic subformula. At the end of the translation process, the original

modal logic formula is destructively changed to its first-order equivalent, but all

pointers to subformulae are associated with the modal logic formulae in the copy.

5.3 A new approach to renaming

Implementing the structural transformation suggested in [Sch06, SH07, Sch08]

and described in Section 4.2 requires fundamental changes to how SPASS handles

renaming. In this chapter I introduce a new solution that makes use of the

structural transformation module implemented in SPASS.

There are two main differences between the structural transformation presented

in [HdNS00, HS02] and in the mentioned references. First, in [Sch06, SH07, Sch08]

positive definitions are introduced for negated formulae. The second difference

is that definitions are also introduced for relational formulae. In this section,

I explain how I accommodated these two points in the implementation of this

project and give a detailed example.

Renaming negated formulae

SPASS already has an implementation of a sophisticated renaming module for

first-order logic. I tried to find a different solution that makes use of the code

with small acceptable changes or additions. The goal was to find a formula that

produces the same definitional clauses for ¬(ψ ∧ φ) and ¬[α]ϕ as the structural

transformation in Section 4.2 produces.

I was able to produce the same results by doing the following:

• I conjugated every non-atomic negated formula with an equivalent form

where De Morgan’s law is applied once.

5.3. A NEW APPROACH TO RENAMING 54

• I updated the hashmap which associates first-order formulae with origi-

nal modal logic subformulae. The update associates the new conjugated

formula with the modal logic subformula instead of the default association.

• I made all introduced predicates have positive definitions even though some

replaced subformulae may have negative polarity.

• The mapping function λ that has been previously defined in Section 4.1, is

used to introduce a new Skolem predicate for each subformula associated

with a non-atomic modal logic subformula.

Take for instance the first-order formula ∃x.¬(p(x) ∧ q(x)), which is the first-

order translation of the modal logic formula ¬(p∧ q). We transform this formula

into the equivalent form ∃x.¬(p(x)∧q(x))∧(¬p(x)∨¬q(x)). Then, we remove the

association between the modal logic formula ¬(p ∧ q) and the original first-order

translation ¬(p(x)∧ q(x)), and make the modal logic formula associated with the

new dual form ¬(p(x) ∧ q(x)) ∧ (¬p(x) ∨ ¬q(x)) instead.

Figure 5.2 shows each first-order subformula eligible for replacement, the modal

logic subformula it is associated with, and the Skolem predicate introduced to

replace it.

First-order formula modal formula Skolem predicate

¬(p(x) ∧ q(x)) ∧ (¬p(x) ∨ ¬q(x)) ¬(p ∧ q) Q¬(p∧q)
p(x) ∧ q(x) p ∧ q Qp∧q

¬p(x) ¬p Q¬p
¬q(x) ¬q Q¬q

Figure 5.2: Introducing fresh Skolem predicates for first-order formulae associated
with non-atomic modal formulae

Figure 5.3 shows the positive definitions obtained from applying structural

transformation to the first-order formula, and the clauses after conversion to

conjunctive normal form, and applying Skolemization and clausification.

The first clause is the unit clause representing the formula and the rest are

definitional clauses. By comparison to what we get from applying the structural

5.3. A NEW APPROACH TO RENAMING 55

Applying structural transformation Clausal form

∃x.Q¬(p∧q)(x) 1. Q¬(p∧q)(a)
∧∀x.Q¬(p∧q)(x)→ (Q¬p(x) ∨Q¬q(x)) 2.¬Q¬(p∧q)(x)+ ∨Q¬p(x) ∨Q¬q(x)
∧∀x.Q¬(p∧q)(x)→ ¬Qp∧q(x) 3.¬Q¬(p∧q)(x)+ ∨ ¬Qp∧q(x)+

∧∀x.Qp∧q(x)→ (Q¬p(x) ∧Qq(x)) 4.¬Qp∧q(x)+ ∨ p(x)
5.¬Qp∧q(x)+ ∨ q(x)

∧∀x.Q¬p(x)→ ¬Qp(x) 6.¬Q¬p(x)+ ∨ ¬p(x)+

∧∀x.Q¬q(x)→ ¬Qq(x) 7.¬Q¬q(x)+ ∨ ¬q(x)+

Figure 5.3: Results for applying structural transformation and the produced
clausal form

transformation of Section 4.2, we find that the result when compared to Figure 4.2

is identical.

• Clause number 2 and the consequences 6 and 7 map to the result of applying

the first part of the definition ∀x(Qψ(x)→ π′(ψ, x)), where ψ = ¬(p ∧ q).

• Clause number 4 and 5 map to the result of the second part

∀x(Q∼ψ(x)→ π′(∼ψ, (x)).

• Clause number 3 maps to the result of the last part ∀x(Qψ(x)→ ¬Q∼ψ(x)).

Consequently, any negated non-literal formula can be transformed to produce

the exact set of required definitions. This is implemented as a preprocessing

step performed on all first-order translations of modal logic formulae just before

renaming is applied.

Let δ be the function that performs this step. δ is applied to Π(ϕ). Recall that

Π is the standard first-order translation. In this step, any first-order subformula

of the form:

• ¬(π(ψ, x) ∧ π(φ, x)) is transformed to:

¬(π(ψ, x) ∧ π(φ, x)) ∧ δ(∼π(ψ, x) ∨ ∼π(φ, x))

• ¬(∀ y τ(α, x, y)→ π(ψ, x)) is transformed to:

¬(∀ y τ(α, x, y)→ π(ψ, x)) ∧ δ(∃ y τ(α, x, y)∧ ∼π(ψ, x))

5.3. A NEW APPROACH TO RENAMING 56

The version of structural transformation described in Section 4.2 introduces

three definitional clauses for any subformula. However, introducing the extra

definitions for anything other than negated non-atomic formulae is not necessary

for the simulation and is superfluous. Therefore, the new technique introduced

here produces fewer clauses while maintaining the problem’s satisfiability result.

It also achieves the purpose of reusing the current implementation of renaming in

SPASS. A detailed example that compares the results between the two techniques

is given after explaining relational renaming.

The CNFRenaming flag in SPASS controls which kind of subformulae are re-

placed by new predicates. I extended this flag with a new option that controls

the replacement of subformulae for our purpose. In this new option, and just

as we have seen in the example of Figure 5.2, all first-order subformulae associ-

ated with original non-atomic subformulae are eligible for renaming. All other

subformulae are not.

Renaming relational formulae

Let us look again at how structural transformation definitions are introduced for

relational formulae.

Def’(α) =def ∀x, y. (Rα(x, y)→ τ ′(α, x, y))

∧ ∀x, y. (τ ′(α, x, y)→ Rα(x, y)).

Notice that the definition can be viewed as the definition of formulae with zero

polarity because the first part is equal to a positive definition and the second part

is equal to a negative definition. Thus assigning relational formulae a zero polarity

value ensures the two required definitions are obtained. This is one of the areas

where having a separate hashmap for mapping relational formulae proves fruitful.

A first-order formula resulting from a relational subformula in the original modal

logic input is easily identified by checking if the relational formulae hashmap

returns an association. In this project, the definitions of relational formulae are

simply produced by assigning relational formulae a zero polarity value.

This solution however, did not produce accurate results when the converse

operator was present. The reason for this is that the first-order translation of ^

does not involve an equivalent operator similar to how the translation of a modal ∧

5.3. A NEW APPROACH TO RENAMING 57

involves the ∧ operator of the first-order language, but rather switches the order

of the variables of the relation it maps to. Take for instance the subformulae

Rr(x, y). From just looking at this subformula, we cannot know if it requires

renaming because results from the translation of r^ or not. Furthermore, there

may be another subformula Rr(u, v). In first-order logic, these two subformulae

are syntactically equivalent, but they may not be equivalent when looking at

the modal logic associations as one may result from translating r^ and the over

from r.

Relational operators can be applied to relational variables as well as relational

formulae. Let us look at the two cases for the converse operator by example and

see the problems that arise for each case in more detail:

• Let ϕ = [r^]p. The first-order translation for this formula is:

∀x, y. Rr(y, x)→ Pp(x).

Creating the right structural transformation for Rr(y, x) involved three

adaptations:

1. The term Rr(y, x) is an atom. New predicates do not need to be

introduced for atoms because it serves no value. In our case however,

the atom term represents a complex relational formula and we need to

reflect that in the clausal form. This has been overcome by checking

if relational atoms are associated with converse relational formulae.

2. To minimize redundancy, implementations of structural transforma-

tion introduce only one predicate for syntactically equivalent formulae.

In SPASS, syntactically equivalent formulae are referred to as further

matches. Further matches for a renamed formula are all replaced with

the same introduced predicate even if the further matches were not

eligible for renaming. This also caused a problem because the two

occurrences of Rr in a formula translated from [r^]p ∧ ¬[r]q get re-

placed with the introduced predicate for r^. This problem is solved

by creating a method that returns first-order matches not according

to their first-order syntax but according to the syntax of associated

modal formulae. This way, the translation of r is not confused as a

further match to the translation of r^

5.3. A NEW APPROACH TO RENAMING 58

3. The last adaptation is required when the definitional formulae are cre-

ated. The converse property has to be reflected in the definition in or-

der for it to be meaningful. Without the added code, SPASS would cre-

ate a definition of the form Relr(y, x)→ Rr(y, x) ∧Rr(y, x)→ Relr(y, x) ,

which is meaningless because it achieves nothing as it replaces a lit-

eral with another logically equivalent literal. This is corrected by

swapping the variables of the introduced predicate wherever it oc-

curs to mirror the converse effect. The inserted definition becomes

Relr(x, y)→ Rr(y, x) ∧Rr(y, x)→ Relr(x, y) .

• Now let ϕ = [(r1 ∨ r2)^]p

The problem here is that we need two new predicates for the same first-

order formula Rr1(y, x) ∨ Rr2(y, x); one for the converse operator and one

for the disjunction operator.

The definitions must be introduced such that:

∀x, y. R(^)(y, x)→ R(∨r)(x, y)

∧ ∀x, y. R(∨r)(x, y)→ R(^)(y, x)

∧ ∀x, y. R(∨r)(x, y)→ (Rr1(x, y) ∨Rr2(x, y))

∧ ∀x, y. (Rr1(x, y) ∨Rr2(x, y))→ R(∨r)(x, y)

The problem is more complicated if the relational formula is ((α)^)^

or even (((α)^)^)^. Such relational formulae are better simplified. The

simplification is done by performing a preprocessing step that distributes

the converse operator recursively and applies the idempotency law such that

the converse is only applied on relational variables. A set of rewrite rules

are applied for this step is given in Figure 5.4.

Original formula Simplified formula

(α^)^ α
(α ∧ β)^ α^ ∧ β^
(α ∨ β)^ α^ ∨ β^

Figure 5.4: Converse simplification rewrite rules

When the new predicates are created to replace a first-order subformula, the

modal logic formula or relational formula the subformula is associated with is

retrieved. The returned modal or relational formula needs to be associated with

5.3. A NEW APPROACH TO RENAMING 59

the newly introduced symbol. For this purpose I have extended the symbol

data structure in SPASS with a new field that is dedicated to storing associated

modal/relational formulae. It is also possible to store the first-order formula at

this stage in along with the modal logic formula and extend the current imple-

mentation slightly to produce not only modal logic tableau but also first-order

tableau.

Example on renaming

Now let us apply the new method of renaming on the example used in Sec-

tion 4.2 for comparison

ϕ = ¬(¬q ∧ [r1]p) ∧ [r1 ∨ r2]¬p ∧ ¬q

The standard first-order translation Π(ϕ)ofϕ can be obtained as follows:

Π(ϕ) = ∃x. π(¬(¬q ∧ [r1]p) ∧ [r1 ∨ r2]¬p ∧ ¬q, x)

= ∃x. (π(¬(¬q ∧ [r1]p), x) ∧ π([r1 ∨ r2]¬p, x) ∧ π(¬q, x))

= ∃x. (¬π(¬q ∧ [r1]p, x) ∧ (∀y. τ(r1 ∨ r2, x, y)→ π(¬p, y)) ∧ ¬π(q, x))

= ∃x. (¬(π(¬q, x) ∧ π([r1]p, x))

∧ (∀y. (τ(r1, x, y) ∨ τ(r2, x, y))→ ¬π(p, y)) ∧ ¬Pq(x))

= ∃x. (¬(¬π(q, x) ∧ (∀y. τ(r1x, y)→ π(p, y))

∧ (∀y. (Rr1(x, y) ∨Rr2(x, y))→ ¬Pp(y)) ∧ ¬Pq(x))

= ∃x. (¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y))

∧ (∀y. (Rr1(x, y) ∨Rr2(x, y))→ ¬Pp(y)) ∧ ¬Pq(x))

Applying the previously defined prepare for renaming function denoted by δ

gives the following:

δ(Π(ϕ)) = δ(∃ x (¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y))

∧ (∀y. (Rr1(x, y) ∨Rr2(x, y))→ ¬Pp(y) ∧ ¬Pq(x)))

5.3. A NEW APPROACH TO RENAMING 60

When δ is applied to a formula, the method checks if the formula is a translation

of ¬∧ or ¬�. If not, then δ is applied to subformulae.

= ∃ x (δ(¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y)))

∧ δ(∀y. (Rr1(x, y) ∨Rr2(x, y))→ ¬Pp(y) ∧ ¬Pq(x))

The function δ at this point finds the subformula ¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→
Pp(y)), which needs transformation. This formula is transformed so that it is

conjugated with the equivalent form Pq(x) ∨ ¬(∀y.Rr1(x, y) → Pp(y)). δ is also

applied to the newly added part.

= ∃x. ((¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y)))

∧ (δ(Pq(x)) ∨ δ(¬∀y.Rr1(x, y)→ Pp(y)))

∧ (∀ y (Rr1(x, y) ∨Rr2(x, y))→ δ(¬Pp(y) ∧ ¬Pq(x)))

From the new addition ¬(∀y.Rr1(x, y)→ Pp(y)) needs transformation. δ con-

jugates this formula with ∃y.Rr1(x, y) ∧ ¬Pp(y), and again δ is applied on the

new addition.

= ∃x. ((¬(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y)))

∧ (Pq(x) ∨ ((¬∀y.Rr1(x, y)→ Pp(y)) ∧ (∃y.Rr1(x, y) ∧ δ(¬Pp(y)))))

∧ (∀y. (Rr1(x, y) ∨Rr2(x, y))→ δ(¬Pp(y)) ∧ δ(¬Pq(x)))

At this point, we find that δ cannot apply more transformations as all oc-

currences of ¬ are applied to atomic formulae. The final first-order formula

transformed by δ is the following:

= ∃x. ((¬(¬Pq(x) ∧ (∀ y Rr1(x, y)→ Pp(y)))

∧ (Pq(x) ∨ ((¬∀y.Rr1(x, y)→ Pp(y)) ∧ (∃y.Rr1(x, y) ∧ ¬Pp(y))))

∧ (∀y. (Rr1(x, y) ∨Rr2(x, y))→ ¬Pp(y) ∧ ¬Pq(x))

Recall that δ also changes the associations of first-order translations with modal

logic formulae for transformed subformulae. Figure 5.5 breaks down the obtained

first-order formula showing which first-order subformulae correspond to original

modal logic formulae. The last column lists the predicates that will replace each

subformula.

5.3. A NEW APPROACH TO RENAMING 61

First-order formula Associated modal formula Symbol

∃x. (¬(¬q ∧ [r1]p) ∧ [r1 ∨ r2]¬p ∧ ¬q Qϕ

(¬ ¬(¬q ∧ [r1]p) Q(¬∧)

(¬Pq(x) ∧ (∀y.Rr1(x, y)→ Pp(y))) ¬q ∧ [r1]p Q(∧)

∧ (Pq(x) q
∨ ((¬∀y.Rr1(x, y)→ Pp(y)) ¬[r1]p Q(¬�2)

∧ (∃y.Rr1(x, y)
∧ ¬Pp(y)))) ¬p Q(¬p)

∧ (∀y. [r1 ∨ r2]p Q(�1)

∧ (Rr1(x, y) ∨Rr2(x, y)) (r1 ∨ r2) R∨r

→ ¬Pp(y)) ¬p Q(¬p)
∧ ¬Pq(x)) ¬q Q(¬q)

Figure 5.5: Association of first-order and dynamic formulae, and introduced sym-
bols

Figure 5.6 displays the application of structural transformation on the formula

displayed in Figure 5.5 and its clausal form.

Applying structural transformation Clausal form

∃x.Q(ϕ)(x) 1. Q(ϕ)(a)
∀x.Q(ϕ)(x)→ (Q(¬∧)(x) 2.¬Q(ϕ)(x)+ ∨Q(¬∧)(x)

∧Q(�1)(x) 3.¬Q(ϕ)(x)+ ∨Q(�1)(x)
∧Q(¬q)(x)) 4.¬Q(ϕ)(x)+ ∨Q(¬q)(x)

∀x.Q(¬∧)(x)→ ¬Q(∧)(x) 5.¬Q(¬∧)(x)+ ∨ ¬Q(∧)(x)+

∀x.Q(¬∧)(x)→ (Q(q)(x) ∨Q(¬�2)(x)) 6.¬Q(¬∧)(x)+ ∨Q(q)(x) ∨Q(¬�2)(x)
∀x.Q(∧)(x)→ (Q(¬q)(x) 7.¬Q(∧)(x)+ ∨Q(¬q)(x)

∧Q(�2)(x)) 8.¬Q(∧)(x)+ ∨Q(�2)(x)
∀x.Q(¬q)(x)→ ¬Q(q)(x) 9.¬Q(¬q)(x)+ ∨ ¬Q(q)(x)+

∀x.Q(�2)(x)→ ∀y(Rr1(x, y)→ Q(p)(y)) 10.¬Q(�2)(x)+ ∨ ¬Rr1(x, y)+ ∨Q(p)(y)
∀x.Q(¬�2)(x)→ ¬Q(�2)(x) 11.¬Q(¬�2)(x)+ ∨ ¬Q(�2)(x)+

∀x.Q(¬�2)(x)→ (∃yRr1(x, y) 12.¬Q(¬�2)(x)+ ∨Rr1(x, y)
∧Q(¬p)(y)) 13.¬Q(¬�2)(x)+ ∨Q(¬p))(y)

∀x.Q(¬p)(x)→ ¬Q(p)(x) 14.¬Q(¬p)(x)+ ∨ ¬Q(p)(x)+

∀x.Q(�1)(x)→ (∀R∨r(x, y)→ Q(¬p)(x)) 15.¬Q(�1)(x)+ ∨ ¬R∨r(x, y)+ ∨Q(¬p)(x)
∀x, y. R∨r(x, y)→ (Rr1(x, y) ∨Rr2(x, y)) 16.¬R∨r(x, y)+ ∨Rr1(x, y) ∨Rr2(x, y)
∀x, y. (Rr1(x, y) ∨Rr2(x, y))→ R∨r(x, y) 17.¬Rr1(x, y)+ ∨R∨r(x, y)

18.¬Rr2(x, y)+ ∨R∨r(x, y)

Figure 5.6: Structural transformation and clausal form of renaming example

5.4. FROM RESOLUTION TO TABLEAU 62

When we compare the number of clauses produced by the new renaming

method in this example and the clauses produced in Figure 4.3, we find that

the new method produced only 18 clauses whereas the previous method pro-

duced 25. The extra 7 clauses produced in Figure 4.3 are superfluous to the

derivation because they result from introducing definitional clauses of formulae

that do not exist in the input formula. For example, applying renaming on (p∧q)
using the structural transformation of Section 4.2 would also include definitional

clauses for ¬(p∧ q), ¬p and ¬q all of which do not occur in the original formula.

5.4 From resolution to tableau

A tableau derivation step consits of two parts:

• the modal logic (sub)formula obtained in that step

• and the justification. The justification indicates the rule that was applied

and the formula(e) that it was applied on. For instance (∧, 3) says that the

derivation step is produced by applying the (∧) rule on step 3.

Modal formulae and subformulae are associated with the introduced predicates

during renaming. This makes the first part of translating a derivation step just

a matter of retrieving the modal formula associated with the literal symbol. To

know what rule has been applied however, requires some analysis.

In order to store the tableau derivation steps, I created a new data structure in

SPASS. Pointers to all created structures are collected and maintained in a list.

Fields

indentation level
step number
rule origin
label
parents
worlds
modal term

example1

1
1
given
Conjecture0
null
(skc0)
¬(q ∧ ¬([r ∨ s]¬q))

example2

2
2
¬∧
null
1
(skc0)
[r ∨ s]¬q

Figure 5.7: Tableau steps data structure with examples

5.4. FROM RESOLUTION TO TABLEAU 63

Figure 5.7 illustrates the fields of the data structure created for saving tableau

derivation information along with two small examples. Fields of the data struc-

ture are explained here briefly.

Setting the indentation level is done at a stage after the translation is complete

and is explained later on in Section 5.5. The indentation level is used when

printing out a tableau proof so that it looks like a branching tree. Step number is

an incremental ID number to identify derivation steps when they are referenced in

the reasoning part. Rule origin is an enumeration of values; one for each rule plus

unknown if the translator failed to conclude a rule. Label is associated with a user

input formula. Printing a label for given formulae is most beneficial when a large

number of formulae are input and a proof is output because it identifies which

formulae from the input set contributed to the proof. Parents store pointers to

steps that the rule was applied on. Worlds is a list of one or two Skolem constants

labelling modal or relational formulae respectively. Finally, modal term saves the

modal logic subformula.

The production of tableau derivations is done in two steps: translation of input

clauses, and translation of derived clauses.

I use a resolution-tableau association table to store pointers to each resolution

step along with the pointer to the equivalent tableau step.

Translating input clauses

The input set of clauses is passed to an input translation function. According

to the applied structural transformation, each unit clause in the input set is

positive, ground and corresponds to a dynamic modal logic formula input by the

user. Thus, for each unit-clause, a tableau derivation step is created.

Each tableau step is associated with a unique incremental ID number starting

from one. For derivations corresponding to an input clause, the rule origin is set

to given indicating it is input by the user. The clause literal argument, which

is a Skolem constant since the clause is ground, represents the world that labels

the formula. SPASS allows labelling input formulae, and creates a generic label

5.4. FROM RESOLUTION TO TABLEAU 64

if the user did not input a label. This label is also saved in the tableau derivation

data structure to identify which input formula it corresponds to.

All other input clauses represent tableau rules. The translation method does

not produce tableau derivations for these. Instead it analyses the clause and

finds the rule it corresponds to. The number of each of these clauses and the rule

name the clause represents are stored in a rules table, which is referenced during

the production of derived clauses. The names for rules in the implementation

are given in Figure 5.8. The only tableau rule that does not take a form of a

definitional clause is contraction but it is easily identified if the inference rule

that is applied is factoring.

Tableau rule encoding in SPASS

∧ And

¬∧ NAnd

� Box

¬� NBox

∧r AndR

∧rI AndRI

∨r OrR

∨rI OrRI

^ Conv

^I ConvI

Cont Cont

⊥ Clash

unknown unknown

Figure 5.8: Encoding of tableau rules

The algorithm for analyzing the definitional clause and setting a rule is given in

Figure 5.9. The algorithm refers to negative literals as premises and to positive

literals as conclusions. In SPASS these are called antecedents and succedents

respectively. The algorithm basically inspects the premises and conclusions and

their arguments. When a predicate has two arguments, then the predicate rep-

resents a relational formula and a propositional formula otherwise.

The algorithm starts in line 1 by checking if the clause has got no conclusion.

In which case, the conclusion is actually the empty set. A clause of this form

5.4. FROM RESOLUTION TO TABLEAU 65

Algorithm: Find rule translation
1. if conclusion literals = 0 then set rule to Clash

2. else if conclusion literals > 1 then
3. if premise literal arguments > 1 then set rule to ORR

4. else set rule to NAnd

5. else if premise literals > 1 then
6. if conclusion literal arguments > 1 then set rule to AndRI

7. else set rule to Box

8. else if premise literals = 1 AND conclusion literals = 1 then
9. if premise literal arguments = 1 then
10. if conclusion literal arguments > 1
11. OR conclusion literal has new argument
12. then set rule to NBox

13. else set rule to And

14. else if premise literal arguments = 2
15. AND conclusion literal arguments = 2 then
16. if conclusion literal arguments =
17. reversed premise literal arguments
18. then set rule to Conv

19. else set rule to unknown

Figure 5.9: Algorithm for translating input definitional clauses to tableau rules

represents a closure rule which is named in the implementation as Clash. Other-

wise, the clause has got a conclusion, and so the algorithm checks if the conclusion

is made of more than one literal. If so, then the clause represents a branching

rule, which is either (∨r) or (¬∧). We differentiate the two rules by checking the

number of arguments of the premise. If it contains more than one argument, then

the predicate is a binary predicate, which means that it represents a relational

formula. In this case, the clause represents a (∨r) denoted in the implementation

by ORR. Otherwise, it represents (¬∧) denoted by NAnd.

Reaching line 5 means that there is only one conclusion literal in the clause.

So, the algorithm checks if the premise literals of the clause are more than one.

If so, then it is either a ([α]) rule or a (∧rI) rule. The conclusion of a ([α]) rule is

a unary predicate, whereas the conclusion of a (∧rI) is a binary predicate. Thus,

checking the arguments of the conclusion is sufficient to know what rule the clause

represents.

5.4. FROM RESOLUTION TO TABLEAU 66

Line 8 checks if the premise literals are equal to 1 and the conclusion literals

are also equal to 1, which is actually the only case left to possibly produced

definitional clauses. Line 9 does a further check on the premise literal if it contains

a single argument. If so, then it checks in line 10 if the conclusion is binary or

if the conclusion has a new argument. These two cases represent the two (¬[α])

rules. If the conclusion is not binary and has not got a new argument, then line

13 sets the rule to (∧) denoted by And.

Lines 14 and 15 check if the clause is binary by checking that the premise and

conclusion are binary. In this case the rule represents one of the relational rules

(^), (^I), (∧r) or (∨rI). Knowing exactly which rule the clause represents is not

done at this stage just yet. However, lines 16 and 17 check if the arguments of the

premise and conclusion are switched. This indicates that the clause represents one

of the two converse rules. For the two rules (∧r) and (∨rI), the algorithm cannot

detect which has been applied just yet because the conclusion and premise parts

are similar. This is why on line 19 the algorithm sets the rule to unknown.

Translating derived clauses

During the derivation of resolution inference steps, the derived clauses are

passed to a derivation translation function that I have added to translate the

clauses to tableau steps. Derived clauses are all ground and take one of three

forms:

• Positive non-unit clause

Positive non-unit clauses are clauses that will eventually be split into unit

clauses. Since they have no corresponding formulae in the tableau deriva-

tion, I associate them in the resolution-tableau association table with a

tableau step previously created. This is done by checking which of the

parent clauses returns a corresponding tableau step.

Non-unit clauses are also important in setting the indentation level of

branches according to the number of literals it contains. Explanation on

this part is given in Section 5.5.

• Positive unit clause

Most derived clauses fall under this category. Each of these result from an

5.4. FROM RESOLUTION TO TABLEAU 67

application of a rule. A derived clause in SPASS has a set of parent clauses.

The parent clauses are the set of clauses that resolved together to produce

the inference step. If the inference origin is factoring, then the tableau rule

origin is set to Cont denoting contraction. Factoring is applied to only one

parent clause. The parent clause’s number is used to retrieve the tableau

derivation step it represents from the association table. The tableau parent

step is stored in parents.

If the origin of the inference step is splitting, then the origin of the tableau

step is one of two: the (¬∧) rule or the (∨r) rule. The two rules are

differentiated as explained before by checking the clause is unary or binary.

A unary clause means the derivation results from (¬∧), and if it is a binary

clause then it results from (∨r). The parent of a split clause is a positive

non-unit clause. As explained before, we do not produce a tableau step

for non-unit clauses because they are considered redundant to a previous

tableau step. However, I associate non-unit clauses that do not have a

tableau translation with the previous logically equivalent tableau derivation

step. For instance, both Q¬(p∧q)(a) and Q¬p(a)∨Q¬q(a) are associated with

the tableau translation ¬(p ∧ q). So when Q¬p(a) ∨Q¬q(a) is referenced as

the parent clause, the tableau parent clause would be ¬(p ∧ q).

If a clause results from applying hyper-resolution, then one of the parent

clauses has to be a definitional clause from the input set corresponding to

rules. Recall that we stored all definitional clauses and the rules they corre-

spond to in a rules table. Thus, we get the rule origin by retrieving the rule

the definitional parent clause represents from the rules table. Other parent

clauses are used to retrieve tableau parents by checking the resolution-

tableau association table. If the retrieved tableau rule is unknown, then it

is either resulting from (∨rI) or (∧r). The two are differentiated by checking

with the relational formula of the parent step. If the conclusion formula is

part of the parent formula, then it results from (∧r). Otherwise, it results

from (∨rI). Also, if the retrieved tableau rule is Conv, then it is either (^)

or (^I). These are also differentiated in the same way by checking with the

relational formula of the parent step. If the conclusion formula is part of the

parent formula, then it results from (^). Otherwise, it results from (^I).

5.5. SETTING TABLEAU STEP INDENTATION 68

• Negative unit clause

SPASS uses complement splitting because it is more efficient when deriving

inferences. The use of complement splitting affects tableau branching rules

slightly. As a reminder, the definitions of branching rules with complement

splitting take the following form:

(¬∧)
s : ¬(ϕ ∧ ψ)

s : ∼ϕ | s : ϕ, s : ∼ψ
(∨r) (s, t) : (α ∨ β)

(s, t) : α | (s, t) : ∼α, (s, t) : β

Due to complement splitting, negative unit clauses may be derived. When

translating these clauses, the complement of the modal/relational formula

that is associated with literal symbol is acquired. This means that if the

associated formula is already negated, then the complement of the formula

is the formula that occurs under the negation.

5.5 Setting tableau step indentation

In order for a tableau proof to be comprehensible, it is important to easily differ-

entiate the different branches in a derivation tree. The idea is mimic to a treelike

structure through indenting tableau derivation steps according to a set of rules.

In general, when branching occurs, the indentation level is increased, which de-

notes the beginning of a sub-branch. On the other hand, when the closure rule is

applied closing-up a branch, then the indentation level is decreased, which means

that we have moved to another sub-branch.

This indentation style is similar to the ones produced by pdl-tableau [Sch07]

and MLTP [Li08] systems. Pdl-tableau is a prototypical implementation of the

tableau calculus for PDL implemented by Renate Schmidt. MLTP is a efficient

and generic modal logic prover implemented by Zhen Li.

Figure 5.10 is a small example showing this indentation style in representation

a tableau derivation tree. This is followed by Figure 5.11, which displays the

corresponding abstract tree representation of the derivation.

5.5. SETTING TABLEAU STEP INDENTATION 69

Derivation step Applied rule

1 a : ¬
(
¬(d ∧ ¬d) (given)
∧¬(¬(p ∧ q ∧ s) ∧ s ∧ q ∧ p)

)
2 a : (d ∧ ¬d) (¬∧:1)
3 a : d (∧:2)
4 a : ¬d (∧:2)
5 a : ⊥ (⊥:3,4)

6 a : (¬(p ∧ q ∧ s) ∧ s ∧ q ∧ p) (¬∧:1)
7 a : s (∧:6)
8 a : q (∧:6)
9 a : p (∧:6)
10 a : ¬(p ∧ q ∧ s) (∧:6)

11 a :¬s (¬∧:10)
12 a : ⊥ (⊥:7,11)

13 a :¬q (¬∧:10)
14 a: ⊥ (⊥:8,13)

15 a :¬p (¬∧:10)
16 a: ⊥ (⊥:9,15)

Figure 5.10: Using indentation to represent tableau branches

1

%%JJJJJJJJJJ

zzuuuuuuuuuu

2− 4

��

6− 10

�� $$JJJJJJJJJJ

zztttttttttt

5.⊥ 11

��

13

��

15

��
12.⊥ 14.⊥ 16.⊥

Figure 5.11: Corresponding tree representation

In the example, 1 is the formula at the root of the tree since no formulae occur

above it. The formulae 2 to 5 occur on the left branch below 1, while 6 to 10

occur on the right branch below 1.

The left-most branch of the tree derivation is given by 1 to 5. This branch

is closed when 5. a : ⊥ is derived. At this point, backtracking takes place and

the derivation continues by exploring the right branch, which is started by 6 a :

5.5. SETTING TABLEAU STEP INDENTATION 70

(¬(p ∧ q ∧ s) ∧ s ∧ q ∧ p). Steps 7 to 10 are the result of applying the ∧ rule.

Since a formula may consist of several disjuncted subformulae as in 10 a :

¬(p ∧ q ∧ s), every branch is indented with enough room for the indentation of

the rest of branches. Step 10 results into 3 distinct branches, the first sub-branch

started by step 11 is indented 2 units inwards. The second sub-branch started

by step 13 is indented a single unit. The last sub-branch started by step 15 does

not need indentation.

For a given formula in the derivation, the branch on which it occurs is given

by the sequence of formulae above it with the same indentation level or a smaller

indentation level. If a previous step has a smaller indentation level, then again

only steps with the same indentation level or a smaller indentation level are part

of the branch.

For instance, in the example in Figure 5.10, if we wanted to identify the branch

that caused the clash in step 14, we look at the previous steps. Step 13 has the

same indentation level as 14, so we know it belongs to the branch. Steps 11 and

12 do not belong to the branch because they have a bigger indentation level. Step

10 has a smaller indentation level so it belongs to the branch and it also becomes

the new measure. Steps 6 to 9 are all on the same indentation level as 10, so

they are part of the branch. Steps 2 to 5 have a bigger indentation so they are

not. Finally, step 1, which is the root is of course part of the branch. Thus, the

branch consists of the sequence {1, 6, 7, 8, 9, 10, 11, 13, 14}. Although 2, 3, 4

and 5 have the same indentation level as 14, they are not part of the branch as

they belong to the left-most branch as illustrated in Figure 5.11.

Calculating the indentation level is done in two steps. The first step is to

create a branches table where each tableau step known to cause branching has an

entry associated with the number of branches that it would produce as well as

a branching counter initialized with the same number. This is done during the

back translation of resolution derivation steps.

5.5. SETTING TABLEAU STEP INDENTATION 71

According to the way renaming is defined, resolving a clause of the form

Q∼(p∧q)(a) with the definitional clause for Q∼(p∧q) produces this resolvent:

Q∼p(a) ∨Q∼q(a)

Splitting is applied on the latter clause. However, the resolvent is actually seman-

tically equivalent to the previous clause when translated into tableau and thus is

not transformed into a tableau step. However, the number of succedent literals

from this extra step is what we use in setting up the entries in the branches table

and associating them with the respective tableau formula.

For the example used in Figure 5.10 for instance, the branches table would have

two entries as follows:

Clause branches branch counter
1′ 2 2
10′ 3 3

Figure 5.12: Example of a branches table

1′ and 10′ represent resolution clauses that are not transformed into tableau

derivation steps but are semantically equivalent to steps 1 and 10 respectively.

The second step is setting up an indentation level for every formula contributing

to the proof. If completion is found when the input is satisfiable, then setting

the indentation level becomes irrelevant and this step is ignored. This is so

because indentation is meant to represent a tree-like structure. When the input

is satisfiable, the printed tableau consists only of a single open branch rather than

a derivation tree.

By looping through the proof derivation steps, the rule origin of the equivalent

tableau translation is examined as follows:

• If the applied rule is the (¬∧) rule or the (∨r) rule then branching takes

place. A branch counter associated with the parent clause is retrieved

from the branches table. Recall that the branch counter is initialized with

5.6. TABLEAU PROOFS AND MODELS 72

the number of branches the step would produce. The general indenta-

tion counter (originally initialized to 1) is increased by n, where n =

branch counter -1. The indentation value n is pushed into a stack. The

step indentation level is set equal to the new value of the general indenta-

tion counter. The value of the branch counter is decreased by 1 and updated

in the branches table.

For example, step 2 in Figure 5.10 is a result of applying the (¬∧) rule.

We retrieve the branch counter value associated with 1′ from Figure 5.12.

The retrieved value is 2. Thus, n is equal to 1. The counter is then decreased

by 1 extra indentation level. So when the second branch at step 6 is reached,

the retrieved counter value will be 1 and n will be equal to 0 indicating the

branch does not need indentation.

When the branch counter reaches its minimum value, it gets re-initialized

to the original value of branches. This is because in some derivations, the

same formula might need to reproduce its sub-branches on more than one

branch. Not reinitializing the counter would cause all the sub-branches of

the second branching attempt to have the same indentation level.

• If the applied rule is a Clash (⊥), then the formula indentation level is

assigned the value of the general indentation counter. The counter is then

decreased by the indentation value popped-out from the stack for back-

tracking.

• Otherwise, the formula indentation level is set to the indentation counter

value.

5.6 Tableau proofs and models

At the end of the search in SPASS, if the problem is satisfiable, then a saturated

set of clauses is output representing a model. Otherwise, a proof is produced.

In both cases, the output does not always mirror the resolution derivation steps.

For example, when a derivation explores a branch and it turns out to be closed,

it continues with other branches until it finds an open branch. If an open branch

is found, then all derivation clauses that do not belong to the open branch are

5.6. TABLEAU PROOFS AND MODELS 73

eliminated from the saturated set of clauses. Similarly, we find the output of a

proof includes only derivation steps that contribute to the proof. It follows that

not all translated tableau steps are needed for a proof or a model. For this reason,

I have created a method that selects the necessary tableau steps for the proof or

model from the translated derivation set.

The implementation prints out a tableau single open branch representing a

model if the input is satisfiable. A single open branch is displayed in a linear

format. Otherwise, if all tree branches are closed and a proof is found, then the

proof tree is output in an indented style as explained in Section 5.5.

We have two kinds of formulae: given formulae and derived formulae. The

notation for a given formula is displayed as:

n[Giv : label] || w : modal formula

n denotes the tableau step number which is unique for each derived formula.

Giv denotes that the formula’s origin is given by the user. The given formula is

identified by a unique label, which has either been specified by the user in the

input set or it was generically produced by SPASS. The two parallel lines || are

just a separator between the formula information and the labelled formula itself.

w is a Skolem term representing a world in a model.

Derived formulae have a slightly different notation:

n[origin : {parent}+] || w : modal formula

n[origin : {parent}+] || (w, v) : relational formula

The difference between a given formula and a derived one, is the [origin :

parent+] part. origin represents what rule has been applied to derive the step.

Rule names can be found in Figure 5.8. Some derived formulae are relational

formulae. In which case, relational formulae are labelled with a set of two Skolem

terms (w, v).

{parent}+ represents the formula(e) that the rule was applied on. The plus

sign denotes that for any derived formula, there must be at least one formula

that the rule was applied on. Derived formulae usually have utmost 2 parents

5.7. BRANCHING COMES LAST 74

depending on the applied rule. However, for the (∧rI) rule, the number of parents

depends on the number of arguments the relational ∧ has in the original modal

formula. If we make the ∧ operator a binary operator, then all rules would have

at most 2 parents.

5.7 Branching comes last

During the implementation of the resolution-tableau prover, a problem was no-

ticed when looking at some of the tableau proof tree output. In a tableau tree,

each node contributing to the branch must be present on the branch. In other

words, any node that is not appearing on a specific branch is not considered part

of it. For some test cases, some nodes seemed missing from where they should

appear.

We have seen in Section 5.10 how indentation is set and how branch nodes are

identified. As a reminder, the indentation of a tableau formula is increased when

branching and decreased after a branch is closed by a closure rule. Inference

steps in between the beginning of a branch and its closure inherit the indentation

level of the branch it is on. This means that nodes resulting from inference steps

that could have been derived before the main branch splits will inherit one of the

smaller branch’s indentation level. This will make this step seem to be belonging

to one branch without the others. Thus the step will seem to be missing from

other branches.

Let us look at the proof example in Figure 5.13 to understand the problem

more clearly. Nodes 9 and 10 result from applying the (¬�) rule on node 8. At

this stage, there are two applicable rules: the (�) rule is applicable on nodes 7

and 9, and the (¬∧) rule is applicable on node 10. The derivation in the figure,

applied the branching rule (¬∧) first and concluded node 11, which started the

left branch. Node 12 is the result of applying the (�) rule, which could have been

applied before branching. Since node 12 is derived after branching took place, the

node inherited the indentation level of left branch. After a few derivation steps,

the left branch is closed and the right branch is explored at node 36. Notice now

that node 37 is the result of applying the (¬∧) rule on node 12. Since node 12 is

referenced by another node on the right branch, it seems missing from this branch.

5.7. BRANCHING COMES LAST 75

Derivation Justification

...
7. a : [r]¬(p ∧ a)
8. a : ¬[r](¬p ∧ ¬q)
9. (a, f1(a)) : r (¬� : 8)
10. f1(a) : ¬(¬p ∧ ¬q) (¬� : 8)

11. f1(a) : p (¬∧ : 10)
12. f1(a) : ¬(p ∧ a) (� : 7, 9)

13. f1(a) : ¬p (¬∧ : 12)
⊥ (⊥ : 11, 13)

15. f1(a) : ¬a (¬∧ : 12)
...
⊥

36. f1(a) : q (¬∧ : 10)
37. f1(a) : ¬p (¬∧ : 12)

...
⊥

42. f1(a) : ¬a (¬∧ : 12)
...
⊥

Figure 5.13: Illogical proof structure

Notice that the attempt of changing the indentation level of node 12 to the

indentation level of the main branch it actually belongs to would not solve the

problem. This is because node 11 would then look like an open ended branch and

not part of the branch containing nodes 12, 13, and 15.

Figure 5.14 shows the tree representation of the example in Figure 5.13.

If we go back to how tableau operates, we find that if a branching rule is applied

before an applicable non-branching rule, then the non-branching rule has to be

applied for every created branch. However, the heuristic for applying rules imply

applying branching rules as late as possible because it results in a better, more

efficient tableaux [Kel97]. Delaying splitting in resolution until no other inference

step is applicable is exactly what we need for the solution of the missing nodes

problem.

5.7. BRANCHING COMES LAST 76

...

��
7. a : [r]¬(p ∧ a)

��
8. a : ¬[r](¬p ∧ ¬q)

��
9. (a, f1(a)) : r

��
10. f1(a) : ¬(¬p ∧ ¬q)

tthhhhhhhhhhhhh

**TTTTTTTTTTTT

11. f1(a) : p

��

36. f1(a) : q

!!CCCCCC

}}{{{{{{

12. f1(a) : ¬(p ∧ a)

%%JJJJJJJJ

yyssssssss
37. f1(a) : ¬p

��

42. f1(a) : ¬a

��

13. f1(a) : ¬p

��

15.f1(a) : ¬a

��

...

��

...

��
⊥ ...

��

⊥ ⊥

⊥

Figure 5.14: Tree representation of illogical proof structure

The technical implementation of the solution requires brief understanding on

how SPASS derives clauses. A detailed description on how SPASS derives clauses

can be found in [Wei07]. Briefly, the overall search loop with splitting in SPASS

deals with two main sets and a stack: a set of usable clauses, a set of worked-off

clauses, and a split stack. The basic inference procedure loops until either the

usable clauses are exhausted or a contradiction is detected while the split stack

is empty. If backtracking is not needed, then a new clause called given is selected

from the usable set according to some heuristics. If the clause is splittable, then it

gets split and the split stack is updated. The inference rules are then applied and

the clause is moved to the worked-off clauses. At the end, if the usable clause set

is empty then, the problem is satisfiable. Otherwise, the problem is unsatisfiable.

5.7. BRANCHING COMES LAST 77

The goal is to adjust the order of applied rules on the usable set as a whole.

This means adding a heuristic to how the clauses are chosen from the usable

set. The idea is to choose a clause that is not splittable as long as one exists

in the usable clauses set. As mentioned before, the implementation of structural

transformation produces only range-restricted clauses. Along with ordered hyper-

resolution, splitting is always applied on positive ground clauses.Consequently, I

created a method that returns a clause with less than two positive literals as long

as one exists. Notice that clauses of the form ¬Q1(x) ∨ Q2(x) ∨ Q3(x) are not

splittable at this point, but these clauses represent a branching rule and thus the

method does not return occurrences of these clauses.

Algorithm: Return unsplittable clause
Input: Usable clauses set
Return: A clause that cannot be split or null
1. set Result to null
2. set s = 2
3. for all c in usable clauses
4. if succedent literals of c are less than s
5. Result = c
6. s = number of succedent literals of c
7. end if
8. end for
9. return Result

Figure 5.15: Algorithm for choosing a clause not suitable for splitting

The algorithm in Figure 5.15 shows how the method for choosing a clause that

is not splittable is implemented. Succedent literals denote positive literals of a

clause in SPASS. The algorithm returns either a clause with zero or 1 positive

literals or a null value indicating that all clauses are suitable for splitting.

Chapter 6

Adding relational frame

conditions

This chapter is organized as follows: Section 6.1 describes how relational frame

conditions can be imposed in first-order resolution and the derivation steps are

affected. In Section 6.2, I redfine the tableau calculus so that it reflects what

happens in the first-order resolution derivations. In Section 6.3 I explain how

clauses obtained from adding relational conditions are translated and presented

in the output. In Section 6.4 I propose another solution to supporting relational

conditions, which is based on defining worlds.

6.1 Simulating relational conditions

In SPASS, relational frame conditions can be imposed by adding first-order logic

formulae to the axioms part of the input file. Figure 6.1 shows the first-order

formulae and the obtained clausal form for axioms T, D, B, 4 and 5.

First-order definition Clausal Form

T ∀x.Rri(x, x) Rri(x, x)
D ∀x∃y.Rri(x, y) Rri(x, fi(x))
B ∀x.Rri(x, y)→ Rri(y, x) ¬Rri(x, y)+ ∨Rri(y, x)
4 ∀x, y, z(Rri(x, y) ∧Rri(y, z))→ Rri(x, z) ¬Rri(x, y)+ ∨ ¬Rri(y, z)

+ ∨Rri(x, z)
5 ∀x, y, z(Rri(x, y) ∧Rri(x, z))→ Rri(y, z) ¬Rri(x, y)+ ∨ ¬Rri(x, z)

+ ∨Rri(y, z)

Figure 6.1: Definitions and produced clausal form for axioms T, D, B, 4 and 5

78

6.1. SIMULATING RELATIONAL CONDITIONS 79

The clausal form of the axioms’ definitions can be transformed to rules that are

very similar to the structural rules previously defined in Figure 2.9. The difference

is that rules produced here are defined with variables and not constants. By

viewing a clause’s negative literals as premises and positive literals as conclusions,

we obtain the relevant tableau rule. Literals of the form Rr(x, y) are transformed

to (x, y) : r.

For instance, the clause ¬Rri(x, y)+∨Rri(y, x) represents the rule (B)
(x, y) : r

(y, x) : r
.

By looking back at the clauses of Figure 6.1, we find that we can categorise

them into two categories. One category contains positive clauses, which are the

first two. These clauses translate to rules with no premise. The other category

contains the rest of clauses, which translate to rules that have premises.

In tableau, all these axiom rules explicitly bind a world and its successor be-

cause the application of the rule implies asserting its conclusion. However, using

first-order hyper-resolution means that the conclusions of the category with no

premises can never be derived in their ground form. Instead, we find that these

clauses have one of two effects: they either resolve with other relational rules to

create a new rule, which is also not ground, or act as a catalyst to applying box

rules, which has a propagational effect on formulae.

Now let us see an example on how new rules are produced from combining

more than one relational condition by looking at how the corresponding clauses

can be resolved using hyper-resolution:

The clause Rri(x, fi(x)) can resolve with both ¬Rri(x, y)+ and ¬Rri(y, z)
+ from

¬Rri(x, y)+ ∨ ¬Rri(y, z)
+ ∨Rri(x, z) by applying the substitution

σ = {fi(x)/y, fi(fi(x))/z}. The result is Rri(x, fi(fi(x))). This result translates

to a new rule of the first category with no premise. We will denote them by PR

standing for propagational rule. The derived rule translation can be written out

as follows: (PR)j
.

(x, fi(fi(x))) : ri
.

We find that also derived rules can produce new rules. For instance, the rule we

just derived can by iterated in the same way to produce (PR)j+1
.

(x, fi(fi(fi(x)))) : ri

6.2. REDEFINING TABLEAU RULES 80

The other kind of inference that propagational rules contribute to as we have

mentioned is resolving with a clause representing a box rule. If we take the

following set of clauses as an example, where x and y represent variables and a

represents a constant:

Rri(x, x)

¬Q�p(x)+ ∨ ¬Rri(x, y)+ ∨Qp(y)

Q�p(a)

We find that the three clauses resolve together and produce Qp(a).

It is important to mention that the behaviour of propagational rules causes

a problem because although the right derivations are produced, conventional

tableau definitions fail to justify some of the produced steps. This is why in

the next section, I redefine tableau rules.

Including other first-order formulae imposing relational conditions with multi-

ple relations for dynamic modal logic is also possible. For instance, we can add

the first order-formula

∀x.∃y.Rr1(x, x)→ (Rr1(x, y) ∧Rr2(x, y))

This first-order formula imposes relational conditions such that for any world x

in our model, if this world is connected to itself via a Rr1 relation, then the world

has a successor that is connected via two relations: Rr1 and Rr2. This first-order

formula will result into two clauses:

¬Rr1(x, x) ∨Rr1(x, f1(x))

¬Rr1(x, x) ∨Rr2(x, f1(x))

These two clauses represent two structural rules denoted by SR:

(SR)1
(x, x) : r1

(x, f1(x)) : r1

(SR)2
(x, x) : r1

(x, f1(x)) : r2

6.2 Redefining tableau rules

We have seen in Section 6.1 how clauses resulting from applying relational con-

ditions resolve with other clauses. This behaviour needs to be explained and

6.2. REDEFINING TABLEAU RULES 81

represented in terms of tableau rules. This section is an attempt to redefine

tableau rules in a way that reflects what happens in the simulation via first-order

resolution.

The axioms T, D, B, 4 and 5 are associated with rules that I define as given

in Figure 6.2. These rules are defined similarly to how tableau structural rules

are defined but the difference is that the definitions involve variables instead of

constants as we have seen before. Doing this creates two kinds of rules: rules that

are defined over variables and rules that are defined over constants. Through-

out the rest of this thesis, I will refer to rules with constants as application rules,

and rules with variables as property rules.

(PR)T
.

(x, x) : r
(PR)D

.

(x, fi(x)) : r

(SR)B
(x, y) : r

(y, x) : r
(SR)4

(x, y) : r, (y, z) : r

(x, z) : r
(SR)5

(x, y) : r, (x, z) : r

(y, z) : r

where x, y and z are variables

Figure 6.2: Tableau rules for axiom properties

Each of the property rules has a relevant application rule that is defined with

constants. We have seen that propagational rules combine with the box applica-

tion rule to create a new box rule. Thus, the associated application rules for the

T and D propagational rules are:

(�)T
T, s : [r]ϕ

s : ϕ
(�)D

D, s : [r]ϕ

t : ϕ

Figure 6.3 shows the definitions of application rules for traditional modal logic.

Notice that property rules form part of the premise in the axioms application

rules.

Property rules are added to the input problem. This addition activates relative

application rules and make them applicable according to the problem.

For instance, take the problem [r]p in K. We find that no rule from Figure 6.3

is applicable.

1. a : [r]p

6.2. REDEFINING TABLEAU RULES 82

(∧)1
s : (ϕ ∧ φ)

s : ϕ
(∧)2

s : (ϕ ∧ φ)

s : φ
(¬∧)

s : ¬(ϕ ∧ φ)

s :∼ϕ | s : ϕ, s :∼φ

(¬�)1
s : ¬[r]ϕ

t :∼ϕ
(¬�)2

s : ¬[r]ϕ

(s, t) : r
(�)

(s, t) : r, s : [r]ϕ

t : ϕ

(�)T
T, s : [r]ϕ

s : ϕ
(�)D

D, s : [r]ϕ

t : ϕ
(Rule)B

B, (s, t) : r

(t, s) : r

(Rule)4
4, (s, t) : r, (t, u) : r

(s, u) : r
(Rule)5

5, (s, t) : r, (s, u) : r

(t, u) : r

Figure 6.3: Tableau application rules for traditional modal logic

Now if we test [r]p in KT, then we add the T property rule to the input set

and then we can apply the application rule (�)T

1. T (given rule)

��
2. a : [r]p (given)

(�:1,2)

��
3. a : p

Similarly, testing [r]p in KTD would make the (�)D applicable as well.

1. T (given rule)

��
2. D (given rule)

��
3. a : [r]p (given)

(�:1,3)

��
4. a : p

(�:2,3)
��

5. f1(a) : p

We previously defined the nodes of the branching tree representation of a

tableau derivation as being labelled formulae. Now, we have two kinds of nodes,

6.2. REDEFINING TABLEAU RULES 83

rule nodes and labelled formulae nodes.

In practice, this given definition of tableau rules is not quite sufficient. The

reason is that combining different relational properties may have consequences

that are not covered by the definition. These combinations create derived rules

as we have seen in the previous section. For example, if we test the satisfiability

of [r][r]¬p∧ [r]p in KD4 with the defined rules in Figure 6.3 we get the following

derivation:

1. D (given rule)

��
2. 4 (given rule)

��
3. a : [r][r]¬p ∧ [r]p (given)

(∧:3)

��
4. a : [r][r]¬p

(∧:3)

��
5. a : [r]p

(�:1,3)

��
6. f1(a) : [r]¬p

(�:1,6)
��

7. f1(f1(a)) : ¬p
(�:1,5)

��
8. f1(a) : p

The first two nodes of the derivation tree are the given rules implied by D

and 4. Node 3 is the input problem. The two following nodes 4 and 5 are the

result of applying the (∧) expansion rule. Then the (�) rule is applied on node 3

with the given rule associated with D. This step creates node 6 with the formula

[r]¬p labelled with f1(a) which is a successor for a. The (�) rule is applied

again on node 6 with the given rule associated with D. This creates node 7 with

the formula ¬p labelled with f1(f1(a)), which is a successor for f1(a). The last

derivation results from applying the (�) rule on node 5 with the given rule D,

6.2. REDEFINING TABLEAU RULES 84

and this creates the formula p labelled with f1(a).

Notice that the transitivity rule should be applied and produce (a, f1(f1(a))) : r

but since (a, f1(a)) : r and (f1(a), f1(f1(a))) : r are not asserted explicitly, this

inference step does not take place. In fact, with the correct derivation steps, the

node f1(f1(a)) : p should be produced and a contradiction should be derived with

node 7 closing up the tree.

To overcome this problem for this particular example, we add a rule for the

combination of seriality with transitivity as follows:

(D4)
.

(x, fi(fi(x)))

which creates the derived application rule

(�)D4
D4, s : [r]ϕ

fi(fi(s)) : ϕ

Other axiom combinations will have other consequences. I do not attempt here

to cover all possibilities, which may not be practical in the first place. However,

we have seen that first-order hyper-resolution automatically derives these rules for

any given combination by applying hyper-resolution and unification. In fact, we

find that using first-order resolution has the added value that allows us to impose

generic relational frame conditions on dynamic modal logics without worrying

about defining related tableau rules.

Take as an example a rule of the form (SR)i
(x, y) : r

(x, x) : r
. This rule says that for

any two arbitrary worlds x and y, if there is a connection from x to y via Rr,

then x is also connected to itself via the same relation. Since this rule has got a

premise, then the application rule takes the form

(Rule)SRi

SRi, (s, t) : r

(s, s) : r

In general, we can say that

(Rule)SRi

SRi, ground(prem(SRi))

ground(conc(SRi))

6.2. REDEFINING TABLEAU RULES 85

gives the application rule for any structural rule, where ground(prem(SRi)) gives

the ground premise of the rule and ground(conc(SRi)) gives the ground conclu-

sion of the rule.

Propagational rules in dynamic modal logic are also affected by the relational

introductory rules (∧rI), (∨rI), and (^I).

For example, if the converse introductory rule for rj is present and we had the

rule

(PR(rj))
.

(x, fi(x)) : rj

then we also get the derived rule

(PR(r^j))
.

(fi(x), x) : r^j

In general, we can say that for any given or derived propagational rule (PR(α))i,

we have a relevant application rule that takes the form:

([α])i
PRj(α), s : [α]ϕ

t : ϕ

where s and t are the result of applying unification.

The general notation makes arbitrary relational conditions in our simulator for

dynamic modal logic justified in tableau.

Figure 6.4 gives the new definition of tableau calculus for dynamic modal logic

with relation conditions.

6.3. REPRESENTING RULE NODES IN THE OUTPUT 86

(⊥)
s : ϕ, s : ¬ϕ

⊥

(∧)1

s : ϕ ∧ φ
s : ϕ

(∧)2

s : ϕ ∧ φ
s : φ

(¬∧)
s : ¬ (ϕ ∧ φ)

s :∼ϕ | s : ϕ, s :∼φ

(¬[α])1

s : ¬[α]ϕ

(s, t) : α
(¬[α])2

s : ¬[α]ϕ

t :∼ ϕ
([α])

(s, t) : α, s : [α]ϕ

t : ϕ

(^)
(s, t) : α^

(t, s) : α
(^)I

(t, s) : α

(s, t) : α^

(∧)r1
(s, t) : α ∧ β

(s, t) : α
(∧)r2

(s, t) : α ∧ β
(s, t) : β

(∧)rI
(s, t) : α, (s, t) : β

(s, t) : α ∧ β

(∨)rI,1
(s, t) : α

(s, t) : α ∨ β
(∨)rI,2

(s, t) : β

(s, t) : α ∨ β

(∨)r
(s, t) : α ∨ (s, t) : β

(s, t) : α | (s, t) :∼α, (s, t) : β

(contr)
s : ¬ (ψ ∧ ψ)

s :∼ψ
(contr)r

(s, t) : α ∨ α
(s, t) : α

([α])i
PRj(α), s : [α]ϕ

t : ϕ
(Rule)SRi

SRi, ground(prem(SRi))

ground(conc(SRi))

(i) t in the rules (¬�)1 and (¬�)2 represents a new constant on the branch.

(ii) The rules (∧)rI , (∨)rI and (^)I have the side condition that the relational
formulae in the conclusions occur as subformulae of a box in the input
problem.

Figure 6.4: New tableaux calculus for K(m)(∧,∨,^)

6.3 Representing rule nodes in the output

The translation of input clauses is a little different when a relational condition

is added. Each clause in the input set first goes through a method that tests if

the clause represents an added relational frame condition. The method does a

check on all literals of the clause. All literals of such clauses need to be binary

and original. Binary literals indicate they represent accessibility relations. By

original literals here I mean that they are not introduced from applying structural

transformation. For a clause that passes the test, a tableau derivation step is

6.3. REPRESENTING RULE NODES IN THE OUTPUT 87

created. The step’s origin is set to GRule indicating that this is a given rule by

the user, which could either be a structural rule or a propagational rule. These

added rules are inserted in the rules table like all other rules indexed by the clause

number.

When printing tableau steps, the print method checks if the printed step’s

origin is GRule. If so, then the print method prints the rule as follows:

n[GRule : Label] {premises}/{conclusions}

where n is the clause number, which will serve here as the rule number. The

origin of the step is GRule followed by the label that was either generated by

SPASS for the formula that generated the clause or added explicitly by the user.

The premises and conclusions are separated by a slash (/). These are translated

from the literals of the original clause. Each literal in the clause of the form

Rri(x, y) is printed as (x, y) : ri, where ri is the relational variable associated

with the relation Rri .

Axiom property clausal form rule translation

D Rr(x, fi(x)) . / (x,fi(x)):r

T Rr(x, x) . / (x,x):r

B ¬Rr(x, y) ∨Rr(y, x) (x,y):r / (y,x):r

4 ¬Rr(x, y) ∨ ¬Rr(y, z) ∨Rr(x, z) (x,y):r, (y,z):r / (x,z):r

5 ¬Rr(x, y) ∨ ¬Rr(x, z) ∨Rr(y, z) (x,y):r, (x,z):r / (y,z):r

Figure 6.5: Properties clauses and rule translations

Figure 6.5 shows the printed translation of property rules for the basic axioms

T, D, B, 4 and 5. Any other rule is printed out in a similar way.

For inference steps, when a derivation step is a result of applying a structural

rule, then the origin of the rule is set to Rule followed by the rule number that

was inserted in the rules table and the numbers of nodes that the rule was applied

on. Since propagational rules are only used with other rules and never applied

on its own, the derivation step will reference the rule number in the parents, but

the origin of the derived step will depend on what was applied.

6.4. MAKING ALL RULES STRUCTURAL 88

6.4 Making all rules structural

In order to maintain as much as possible the conventional methods of tableau, I

came up with a solution that makes all property rules structural. This solution

overcomes all the problems previously discussed because eliminating propaga-

tional rules means every derived step will be ground and no new rules will be

derived.

Due to lack of time, I have not implemented this in the current extension of

SPASS and will not discuss the solution in much detail. In general, the idea is to

implement a few changes so that we go back to producing only range-restricted

clauses as the case was prior to introducing relational frame conditions.

We know that the whole problem is caused by the two clauses

Rri(x, x) and Rri(x, fi(x))

The first clause says that for any world x, this world is connected to itself via the

accessibility relation Rri . The second clause says that for any world x, this world

has a successor fi(x) via the accessibility relation Rri . So, in fact being a world

is the precondition for applying the rules.

Adding world(x) as a precondition gives the following clauses:

¬world(x)+ ∨Rri(x, x) and ¬world(x)+ ∨Rri(x, fi(x))

With this addition, whenever a new world is introduced, we have to define it

as a world. This means that for seriality we also need to produce:

¬world(x)+ ∨ world(fi(x))

Of course this means that adding the seriality property makes the system unde-

cidable except on unsatisfiable problems.

The initial world a also needs to be defined as a world, and the same goes for

the new world introduced by the (¬�) rule. One way of producing these extra

6.4. MAKING ALL RULES STRUCTURAL 89

clauses is by slightly changing the structural transformation so that it produces

∃x.world(x) ∧Qϕ(x) ∧Def(ϕ)

This addition would define the initial world.

For (¬�), we give it the following definition:

∀x.Q¬�ϕ(x)→ (∃y. world(y) ∧Rri(x, y) ∧Q¬ϕ(y))

This would make the ¬� produce three definitional clauses instead of two, one

of which would define the new world.

Let us look at an example with these new clauses. Take for instance the formula

we derived in tableau in Section 6.2: [r][r]¬p ∧ [r]p in KD4.

Input clauses Derived clauses

1. [input] Q∧(a) 12. [OHy:1,3] Q��¬(a)
2. [input] world(a) 13. [OHy:1,4] Q�(a)
3. [input] ¬Q∧ ∨Q��¬(x) 14. [OHy:2,9] Rr(a, f1(a))
4. [input] ¬Q∧ ∨Q�(x) 15. [OHy:2,10] world(f1(a))
5. [input] ¬Q��¬(x) ∨ ¬Rr(x, y) ∨Q�¬(y) 16. [OHy:8,13,14] P (f1(a))
6. [input] ¬Q�¬(x) ∨ ¬Rr(x, y) ∨Q¬(y) 17. [OHy:5,12,14] Q�¬(f1(a))
7. [input] ¬Q¬(x) ∨ ¬P (x) 18. [OHy:15,9] Rr(f1(a), f1(f1(a)))
8. [input] ¬Q�(x) ∨ ¬Rr(x, y) ∨ P (y) 19. [OHy:15,10] world(f1(f1(a)))
9. [input] ¬world(x) ∨Rr(x, f1(x)) 20. [OHy:6,17,18] Q¬(f1(f1(a)))
10.[input] ¬world(x) ∨ world(f1(x)) 21. [OHy:11,14,18] Rr(a, f1(f1(a)))
11.[input] ¬Rr(x, y) ∨ ¬Rr(y, z) ∨Rr(x, z) 22. [OHy:7,13,21] P (f1(f1(a)))

23. [OHy:7,20,22]⊥

Figure 6.6: Derivation of [r][r]¬p ∧ [r]p in KD4 with defined worlds

Figure 6.6 shows the input and derived clauses for the formula with the new

solution. Notice the additions on the input set of clauses containing world defini-

tions. The initial world a is defined as a world in clause 2. Clauses 9 and 10 which

represent seriality property associated with axiom D have a premise world(x).

Chapter 7

Tableau simulation results

In this chapter, I show results of the implementation by running test cases. The

examples are selected to show how the results follow expected behaviour from

previous discussions.

7.1 Expected input

In order for the program to run and produce correct results, it is important for

the input to follow the expectations of the implementation.

I have only discussed and implemented a resolution-tableau simulator for the

dynamic modal logic Km(∧,∨,^) and traditional modal logics, both of which

support arbitrary relational frame conditions.

Relational frame conditions are added as first-order formulae in the axioms part

of the input file. The axioms part should not bear any other kind of formulae.

In the conjectures part only propositional formulae are expected with relational

operators currently limited to ∧, ∨ and ^. Including other relational operators

may not always cause a warning or an error but the tableau simulation may not

produce full derivation steps or correct justifications to the produced steps.

Appendix A shows an example of an input problem. Appendix B shows the

full result from running the problem of the input in Appendix A. The problem is

run with two new flag settings: PrfTr=1 and CNFRenaming=4. The first flag is

90

7.2. AVOIDING REDUNDANCY 91

a new flag that I have added. The flag’s name is short for proof translation and

by turning it on, SPASS provides tableau translation. The other flag controls

the renaming procedure. I have extended this flag to include a fourth option

that applies modal logic renaming to first-order translated formulae. I have also

included a method that turns on flag settings that are important to the simulation

and switches off the ones that are not compatible when translation is requested

by the user.

There is also an optional third flag setting: PIntSy=1. This flag is short for

print introduced symbols. By turning this flag on, every introduced predicate

by the renaming method is printed out along with the modal logic formula it is

associated with. This symbol association table is shown at the beginning of the

output result displayed in Appendix B. This table is helpful if the user would

like to make sure that the associations are done correctly.

Following are a number of selected examples of output produced by the imple-

mentation.

7.2 Avoiding redundancy

Figure 7.1 shows a very small example, where the tableau derivation steps

are fewer than what we would normally expect. The purpose of including this

example is to raise the awareness about this unusual behaviour and to explain to

the reader why it is justified.

----------------------------TABLEAU -TRANSLATION -----------------------------

Model found:

1[Giv:C1] || (skc0):and(not(p),not(and(p,q)))

2[And:1] || (skc0):not(and(p,q))

3[And:1] || (skc0):not(p)

---------------------------------SPASS -STOP ---------------------------------

Figure 7.1: Avoidance of redundancy

In the example, steps 2 and 3 result from applying the (∧) rule on the given

formula. Although the (¬∧) rule can be applied on node 2 and create a new

branch, it is not and we find that the derivation stops declaring that the formula

is satisfiable.

7.3. TESTING RENAMING OF NEGATED FORMULAE 92

The explanation for this behaviour is given in [Sch08]. The explanation says

that this is an enhancement to tableau calculus obtained from the use of res-

olution. In resolution, unnecessary duplication and superfluous inferences are

avoided by subsumption checking. This means that if a previously derived clause

subsumes a new one, then the inference step is avoided because it results in a

redundant clause that does not affect the derivation. The cited paper defines

redundancy in this context for tableau. The definition says that an application

of a rule is redundant if it results in redundant conclusions.

For example, for any s, s : > is redundant. In the example of Figure 7.1, we

have both s : ¬p and s : ¬(p ∧ q). Applying the (¬∧) rule would result in a

redundant conclusion, which is s : ¬p. This is why the (¬∧) rule is not applied.

No other inferences are possible and the derivation stops.

With this example, we can have a sense of how the simulated semantic tableau

automatically and naturally benefits from first-order resolution and the effect this

can have on performance results.

7.3 Testing renaming of negated formulae

We have previously seen the purpose of eliminating defined operators rather

than transforming the formula to negation normal form. In general, assuming

renaming is done correctly, if we have a negated labelled formula, then the deriva-

tion derives a contradiction if the labelled formula occurs positively on the same

branch. If not, then either the (¬∧) rule or the (¬�) rule is applied producing

the conclusion we expect by their definitions.

The example in Figure 7.2 is produced to test and evaluate the new method I

introduced and implemented for renaming negated formulae.

The formula that we are testing for satisfiability is the following:

¬
(
[r1]¬([r1](p ∧ q) ∧ ¬([r1](p ∧ q))) ∧ ¬(¬p ∧ p)

)
Notice that the formula contains two occurrences of [r1](p ∧ q). When the

tableau derivation steps are expanded, we will find that one of the occurrences

7.3. TESTING RENAMING OF NEGATED FORMULAE 93

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):not(

and(box(r1 ,not(

and(box(r1 ,and(p,q)),

not(box(r1 ,and(p,q)))))),

not(and(not(p),p))))

2[NAnd :1] || (skc0):and(not(p),p)

4[And:2] || (skc0):not(p)

3[And:2] || (skc0):p

5[Clash :4,3] || .

6[NAnd :1,2] || (skc0):not(and(not(p),p))

7[NAnd :1] || (skc0):not(box(r1,not(

and(box(r1 ,and(p,q)),

not(box(r1 ,and(p,q)))))))

8[NBox :7] || (skf1 (skc0)):and(box(r1,and(p,q)),

not(box(r1 ,and(p,q))))

9[NBox :7] || ((skc0),(skf1 (skc0))):r1

11[And:8] || (skf1 (skc0)):box(r1,and(p,q))

10[And:8] || (skf1 (skc0)):not(box(r1,and(p,q)))

12[Clash :10 ,11] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.2: Testing negated formulae renaming - 1

will be positive and the other will be negative. We expect the derivation to detect

that the two subformulae are actually two occurrences of the same subformula in

order to derive a contradiction.

The formula that we are testing for satisfiability in the example is negated.

If the subformula under the negation exists somewhere else positively, then the

closure rule is applied. Since there is no such formula, then the tree is expanded

by applying the (¬∧) rule.

A correct expansion indicates renaming has been done correctly. For the (¬∧)

rule, we expect branching, where each branch is a complement of a subformula

that is an argument of the negated (∧). As we expect, the first branch starts

at node 2. We find the formula in node 2 to be the complement of the right

argument. This branch is soon closed with a clash between nodes 3 and 4.

The right branch is then expanded at node 6. Node 6 is the complement of

node 2, which started the left branch. We now expect to find the complement

of the left argument, which is what we find in node 7. Node 7 is a negated box

formula. Since the box formula does not occur positively anywhere else in the

branch, the (¬�) rule must be applied. Again, if renaming is done correctly,

we expect two new nodes to result from the application of this rule. One that

7.3. TESTING RENAMING OF NEGATED FORMULAE 94

carries the complement of the subformula under the box operator labelled with

a new successor, and one that asserts the relation by the box operator between

the current world and the new successor. We find that these are nodes 8 and 9.

Nodes 10 and 11 are the result of the application of the (∧) rule. These are two

non-literal formulae that are complements of each other. We find that the closure

rule is applied and the derivation stops. This shows that renaming was applied

correctly and also that a single predicate was introduced for the two occurrences

of [r1](p ∧ q).

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):not(

and(box(r1 ,not(

and(box(r1 ,and(p,q)),

not(box(r1 ,and(q,p)))))),

not(and(not(p),p))))

2[NAnd :1] || (skc0):and(not(p),p)

4[And:2] || (skc0):not(p)

3[And:2] || (skc0):p

5[Clash :4,3] || .

6[NAnd :1,2] || (skc0):not(and(not(p),p))

7[NAnd :1] || (skc0):not(box(r1,not(

and(box(r1 ,and(p,q)),

not(box(r1 ,and(q,p)))))))

8[NBox :7] || (skf2 (skc0)):and(box(r1,and(p,q)),

not(box(r1 ,and(q,p))))

11[And:8] || (skf2 (skc0)):box(r1,and(p,q))

10[And:8] || (skf2 (skc0)):not(box(r1,and(q,p)))

13[NBox :10] || ((skf2 (skc0)) ,(skf0 (skf2 (skc0)))):r1

12[NBox :10] || (skf0 (skf2 (skc0))):not(and(q,p))

14[Box :11 ,13] || (skf0 (skf2 (skc0))):and(p,q)

16[And :14] || (skf0 (skf2 (skc0))):p

15[And :14] || (skf0 (skf2 (skc0))):q

17[NAnd :12] || (skf0 (skf2 (skc0))):not(p)

18[Clash :17 ,16] || .

19[NAnd :12 ,17] || (skf0 (skf2 (skc0))):p

20[NAnd :12] || (skf0 (skf2 (skc0))):not(q)

22[Clash :20 ,15] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.3: Testing negated formulae renaming - 2

Figure 7.3 shows another derivation for the same formula. The input formula

is changed slightly to:

¬
(
[r1]¬([r1](p ∧ q) ∧ ¬([r1](q ∧ p))) ∧ ¬(¬p ∧ p)

)

7.4. TESTING RENAMING OF RELATIONAL FORMULAE 95

Notice that the second occurrence of [r1](p ∧ q) now has p and q switched. By

comparing with the previous derivation, we find that this derivation is signifi-

cantly longer. This is because the prover failed to detect that [r1](p ∧ q) and

[r1](q ∧ p) are actually equivalent. Thus, the derivation did not apply the closure

rule when it should have and instead continued with branching and backtracking.

In order for the prover to be more efficient in detecting matching formulae, a

simple preprocessing step can be implemented. This preprocessing step reorders

the arguments of the ∧ and vee operators according to an ordering parameter.

If reordering is done before renaming is applied, then all equivalent formulae will

be detectable as they will always have the same order.

7.4 Testing renaming of relational formulae

The implementation of relational formula renaming included several adjustments

to produce correct renaming for relational formulae especially when the formula

includes the converse operator. The purpose of the derivation illustrated in Fig-

ure 7.4 is to test if relational formula renaming after the adjustments produce the

expected results.

Input formula:
([r1](p ∧ q))→ ([r2]〈(r1 ∨ r2)^〉p)

Output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Model found:

1[Giv:C1] || (skc0):and(box(r1,and(p,q)),

not(box(r2 ,not(box(or(conv(r1),conv(r2)),not(p))))))

2[And:1] || (skc0):box(r1,and(p,q))

3[And:1] || (skc0):not(box(r2,not(box(or(conv(r1),conv(r2)),not(p)))))

4[NBox :3] || (skf1 (skc0)):box(or(conv(r1),conv(r2)),not(p))

5[NBox :3] || ((skc0),(skf1 (skc0))):r2

6[ConvI :5] || ((skf1 (skc0)),(skc0)):conv(r2)

8[OrRI :6] || ((skf1 (skc0)),(skc0)):or(conv(r1),conv(r2))

9[Box:4,8] || (skc0):not(p)

---------------------------------SPASS -STOP ------------------------------------

Figure 7.4: Testing relational formula renaming

In the example of Figure 7.4, we see the effect of relational formula renaming.

First, notice that the converse operator that is applied on (r1 ∨ r2) in the input

7.4. TESTING RENAMING OF RELATIONAL FORMULAE 96

problem got distributed over the relational variables in a preprocessing step. The

result of this distribution is (r^1 ∨r^2). This step is important because the converse

does not have a matching operator in first-order logic, which caused a number of

problems as previously demonstrated in Section 5.3.

The derivation starts by applying the (∧) expansion rule on the first node.

This results in nodes 2 and 3. Nodes 4 and 5 are the result of applying the

(¬�) rule to node 3. We find that the new world skf1(skc0) is connected to

skc0 as its successor via the accessibility relation Rr2 . Before solving problems

with the converse operator, step 5 would have produced the labelled formula

((skf1(skc0)), (skc0)) : conv(r2). This is due to the previously discussed prob-

lem of identifying different occurrences of conv(r2) in the first-order translation

and that both conv(r2) and r2 are syntactically equivalent in first-order logic.

This means that both formulae get substituted by the same introduced relational

predicate, which should not happen. In the solution that I implemented, when

two first-order formulae are found syntactically equivalent, a further check is done

on the associated modal/relational formulae. This way, only subformulae that are

syntactically equivalent in first-order logic and in modal logic get substituted with

the same introduced predicate.

Now since we have a r^2 in the problem formula, we find that the introduction

rule of converse is applied on r2 to produce conv(r2). The same case with ∨r,
we have (r^1 ∨ r^2) so the ∨ introduction rule is applied on conv(r2) to produce

or(conv(r1), conv(r2)). This relational formula matches the relational formula of

the box operator in of node 4 and with the same world. Thus, the (�) rule is

applied on both nodes to produce a new formula. No more rules can be applied

and no contradictions have been found so the derivation stops.

We find in this example that the derivation of a formula which includes re-

lational formulae behaves as we expect. This is an indication that relational

formula renaming introduces correct definitional clauses. We have also seen that

previous problems that arose from having the converse operator have been solved

satisfactorily.

7.5. TESTING PROOF INDENTATION 97

7.5 Testing proof indentation

Figure 7.5 shows the output of the example used previously in Figure 5.10.

The purpose of this test case is to check if the indentation of derivation steps

is applied correctly. As a reminder, indentations of derivation steps serve the

purpose of representing tree branches.

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):not(and(not(and(not(and(p,q,a)),p,q,a)),

not(and(d,not(d)))))

2[NAnd :1] || (skc0):and(d,not(d))

4[And:2] || (skc0):d

3[And:2] || (skc0):not(d)

5[Clash :3,4] || .

6[NAnd :1,2] || (skc0):not(and(d,not(d)))

7[NAnd :1] || (skc0):and(not(and(p,q,a)),p,q,a)

11[And:7] || (skc0):p

10[And:7] || (skc0):q

9[And:7] || (skc0):a

8[And:7] || (skc0):not(and(p,q,a))

12[NAnd :8] || (skc0):not(a)

13[Clash :12,9] || .

14[NAnd :8 ,12] || (skc0):a

15[NAnd :8] || (skc0):not(q)

16[Clash :15 ,10] || .

17[NAnd :8 ,15] || (skc0):q

18[NAnd :8] || (skc0):not(p)

20[Clash :18 ,11] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.5: Testing proof indentation

The derivation starts by applying the ¬(∧) rule which results in branching.

Since there are only two arguments to the ∧, the left branch at 2 is indented one

unit. After the closure rule is applied at the end of the left branch at step 5,

the derivation starts exploring the right branch. The right branch does not need

indentation and this is why it appears on the same level as the root node.

Step 6 is the complement of the first split unit. Formulae that result from

complementing a previous split unit have two parents in their justification and

not just one. The first parent refers to the step that results in branching. The

second parent refers to the formula that is being complemented.

More rules are applied to the right branch until another branching formula is

reached in step 8. The ∧ of this formula has got three arguments. This is why

the left most branch of the three branches starts with two levels of indentation.

7.6. APPLYING NON-BRANCHING RULES FIRST 98

Step 14 is the complement of the first branch. Since the complemented formula

affects all subsequent branches, it inherits the indentation level of the formula that

result in branching.

The second branch starting at step 15 is indented with a single unit. Then after

this branch is closed as well, the final branch is expanded with no indentation.

We find that all derivation steps were indented as expected. The only difference

between the derivation shown here and the derivation in Figure 5.10 is that this

derivation demonstrated semantic branching that results from SPASS’s use of

complement splitting.

7.6 Applying non-branching rules first

We have previously seen in Section 5.7 how the order in which derivation steps

are produced can have an effect on the logical structure of a proof in indentation

style.

Figures 7.6 and 7.7 in this section are used to illustrate two derivations for

the same input problem. The first figure illustrates the default derivation, where

the structure of the proof is not logical. The second figure shows the derivation

after incorporating the solution. The purpose of this section is to compare the

two derivations and see if the introduced solution fixed the problem.

In the derivation of Figure 7.6, nodes 3-8 result from applying the (∧) rule on

the first node. Nodes 9 and 10 result from applying the (¬�) on node 8, which

creates a new successor to skc0. Node 13 results from applying the (�) rule on

nodes 3 and 10.

After node 13, the (�) rule is still applicable on several other nodes, but so is

the branching rule (¬∧), which is applicable on node 13. The derivation chooses

applying (¬∧).

The left branch starts at node 15. Then nodes 16 and 17 result from applying

the (�) rule on nodes 4 and 5 respectively. The derivation continues until this

branch is closed by node 35.

7.6. APPLYING NON-BRANCHING RULES FIRST 99

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(box(r,not(and(not(a),not(b)))),

box(r,not(and(p,a))),

box(r,not(and(p,b))),

box(r,not(and(q,a))),

box(r,not(and(q,not(a)))),

box(r,not(and(q,p))),

not(box(r,and(not(p),not(q)))))

3[And:1] || (skc0):box(r,not(and(q,not(a))))

4[And:1] || (skc0):box(r,not(and(q,a)))

5[And:1] || (skc0):box(r,not(and(p,b)))

6[And:1] || (skc0):box(r,not(and(not(a),not(b))))

7[And:1] || (skc0):box(r,not(and(p,a)))

8[And:1] || (skc0):not(box(r,and(not(p),not(q))))

9[NBox :8] || (skf0 (skc0)):not(and(not(p),not(q)))

10[NBox :8] || ((skc0) ,(skf0 (skc0))):r

13[Box:3,10] || (skf0 (skc0)):not(and(q,not(a)))

15[NAnd :13] || (skf0 (skc0)):a

16[Box:4,10] || (skf0 (skc0)):not(and(q,a))

17[Box:5,10] || (skf0 (skc0)):not(and(p,b))

18[NAnd :16] || (skf0 (skc0)):not(a)

19[Clash :18 ,15] || .

20[NAnd :16 ,18] || (skf0 (skc0)):a

21[NAnd :16] || (skf0 (skc0)):not(q)

23[Box:6,10] || (skf0 (skc0)):not(and(not(a),not(b)))

24[NAnd :9] || (skf0 (skc0)):q

25[Clash :21 ,24] || .

26[NAnd :9 ,24] || (skf0 (skc0)):not(q)

27[NAnd :9] || (skf0 (skc0)):p

29[Box:7,10] || (skf0 (skc0)):not(and(p,a))

30[NAnd :29] || (skf0 (skc0)):not(a)

32[Clash :30 ,15] || .

33[NAnd :29 ,30] || (skf0 (skc0)):a

34[NAnd :29] || (skf0 (skc0)):not(p)

35[Clash :34 ,27] || .

36[NAnd :13 ,15] || (skf0 (skc0)):not(a)

37[NAnd :13] || (skf0 (skc0)):not(q)

40[NAnd :9] || (skf0 (skc0)):q

41[Clash :37 ,40] || .

42[NAnd :9,40] || (skf0 (skc0)):not(q)

43[NAnd :9] || (skf0 (skc0)):p

44[NAnd :23] || (skf0 (skc0)):b

46[NAnd :17] || (skf0 (skc0)):not(b)

47[Clash :46 ,44] || .

48[NAnd :17 ,46] || (skf0 (skc0)):b

49[NAnd :17] || (skf0 (skc0)):not(p)

50[Clash :49 ,43] || .

51[NAnd :23 ,44] || (skf0 (skc0)):not(b)

52[NAnd :23] || (skf0 (skc0)):a

54[Clash :36 ,52] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.6: Testing the logical order of derivation steps - 1

Node 36 begins the right branch. After several derivation steps, we find that

node 46 in one of the sub-branches of the right branch is the result of applying

the (¬∧) rule on node 17, which according to the indentation style belongs to

the left branch only and should not be referenced by other branches. In reality,

node 17 belongs to the main branch and not just the left most branch.

7.6. APPLYING NON-BRANCHING RULES FIRST 100

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(box(r,not(and(not(a),not(b)))),

box(r,not(and(p,a))),

box(r,not(and(p,b))),

box(r,not(and(q,a))),

box(r,not(and(q,not(a)))),

box(r,not(and(q,p))),

not(box(r,and(not(p),not(q)))))

3[And:1] || (skc0):box(r,not(and(q,not(a))))

4[And:1] || (skc0):box(r,not(and(q,a)))

5[And:1] || (skc0):box(r,not(and(p,b)))

6[And:1] || (skc0):box(r,not(and(p,a)))

7[And:1] || (skc0):box(r,not(and(not(a),not(b))))

8[And:1] || (skc0):not(box(r,and(not(p),not(q))))

9[NBox :8] || (skf0 (skc0)):not(and(not(p),not(q)))

10[NBox :8] || ((skc0) ,(skf0 (skc0))):r

12[Box:3,10] || (skf0 (skc0)):not(and(q,not(a)))

13[Box:4,10] || (skf0 (skc0)):not(and(q,a))

14[Box:5,10] || (skf0 (skc0)):not(and(p,b))

15[Box:6,10] || (skf0 (skc0)):not(and(p,a))

16[Box:7,10] || (skf0 (skc0)):not(and(not(a),not(b)))

17[NAnd :14] || (skf0 (skc0)):not(b)

18[NAnd :16] || (skf0 (skc0)):b

19[Clash :17 ,18] || .

20[NAnd :16 ,18] || (skf0 (skc0)):not(b)

21[NAnd :16] || (skf0 (skc0)):a

24[NAnd :13] || (skf0 (skc0)):not(a)

25[Clash :24 ,21] || .

26[NAnd :13 ,24] || (skf0 (skc0)):a

27[NAnd :13] || (skf0 (skc0)):not(q)

28[NAnd :9] || (skf0 (skc0)):q

29[Clash :27 ,28] || .

30[NAnd :9 ,28] || (skf0 (skc0)):not(q)

31[NAnd :9] || (skf0 (skc0)):p

32[NAnd :15] || (skf0 (skc0)):not(a)

34[Clash :32 ,21] || .

35[NAnd :15 ,32] || (skf0 (skc0)):a

36[NAnd :15] || (skf0 (skc0)):not(p)

37[Clash :36 ,31] || .

38[NAnd :14 ,17] || (skf0 (skc0)):b

39[NAnd :14] || (skf0 (skc0)):not(p)

41[NAnd :13] || (skf0 (skc0)):not(a)

42[NAnd :12] || (skf0 (skc0)):a

43[Clash :41 ,42] || .

44[NAnd :12 ,42] || (skf0 (skc0)):not(a)

45[NAnd :12] || (skf0 (skc0)):not(q)

47[NAnd :9] || (skf0 (skc0)):q

48[Clash :45 ,47] || .

49[NAnd :9 ,47] || (skf0 (skc0)):not(q)

50[NAnd :9] || (skf0 (skc0)):p

51[Clash :39 ,50] || .

52[NAnd :13 ,41] || (skf0 (skc0)):a

53[NAnd :13] || (skf0 (skc0)):not(q)

55[NAnd :9] || (skf0 (skc0)):q

56[Clash :53 ,55] || .

57[NAnd :9,55] || (skf0 (skc0)):not(q)

58[NAnd :9] || (skf0 (skc0)):p

60[Clash :39 ,58] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.7: Testing the logical order of derivation steps - 2

7.7. INTELLIGENT BACKTRACKING IN SPASS 101

The solution I introduced is to include a heuristic in the main search loop

of SPASS. The goal of this heuristic is to force all non-branching rules to be

applied before the application of any branching rule. For the dynamic modal

logic calculus under study, the two branching rules are (¬∧) and (∨)r.

The example illustrated in Figure 7.7 shows the derivation with the heuristic

of delaying application of branching rules being applied. We notice that indeed

all non-branching rules are applied before branching ones.

All node references in the justification of each step are to nodes which are on

the same branch. The exceptions are nodes introduced by complement splitting.

Take as an example node 20. The justification of node 20 says [NAnd: 16, 18].

When a node is introduced by complement splitting, it refers to both the parent

node as well as the previous branch that it complements. In this node it refers

to node 18 which is the beginning of the first branch.

7.7 Intelligent backtracking in SPASS

In tableau, we have several kinds of backtracking. The naive form is chrono-

logical backtracking, which explores every possible branch regardless of whether

the formulae contribute to the contradiction or not. More intelligent forms of

backtracking disregards unnecessary branch explorations and jumps back to the

last branching point of the search tree which contributed to the contradiction on

the current branch [HS98b].

In the most recent version of SPASS, a new form of intelligent backtracking is

implemented and which is based on labelled splitting [FW08].

The purpose of this section is to show an example where this new form of

backtracking occurs. Figure 7.8 illustrates an abstract form of the derivation

showing the backtracking case. The tree structure in the figure shows the deriva-

tion where several branches are explored and found closed. The important part

of the figure is the node numbered (1) where the two dotted arrows originate.

This node results from applying the closure rule on p and ¬p. Since the branch is

closed, backtracking is performed. In this particular case, whether using chrono-

logical backtracking or more intelligent forms of backtracking, we would expect

7.7. INTELLIGENT BACKTRACKING IN SPASS 102

...
��

¬(¬p ∧ ¬q)
��

¬(p ∧ q)
��

¬(q ∧ ¬a)
��

¬(p ∧ b)
��

¬(p ∧ ¬a)
��

¬(¬a ∧ ¬b)
))TTTTTTT

uullllllll

¬b
))SSSSSSSSSSS

xxqqqqqqq (3) ¬p

b
��

a

**UUUUUUUUUUU

uukkkkkkkkkkk

⊥ ¬p
xxpppppp

))TTTTTTTTTT (2) ¬q

¬a
��

¬q
ttjjjjjjjjjj

**VVVVVVVVVVVV

⊥ ¬a
��

¬p
ttiiiiiiiiiiiii

))SSSSSSSSSS

⊥ q

��

p
��

⊥ (1) ⊥

backjumping

ii

skipped

gg

Figure 7.8: Intelligent backtracking

to backtrack to the node numbered (2). The figure explains that backtracking to

node (2) is skipped and instead the derivation jumps to node (3) and continue

the derivation from there.

This kind of intelligent backtracking has not been previously explained for

semantic tableau. To give a justification in tableau for why backtracking performs

in this way requires deep understanding of the implementation of labelled splitting

in SPASS and the new backtracking rules which included branch condense and

right collapse. Unfortunately and due to lack of time, I do not cover this as it fell

out of the scope of this thesis.

7.8. TESTING FRAME CONDITIONS ON TRADITIONAL MODAL LOGICS103

7.8 Testing frame conditions on traditional modal

logics

Input problem:
Axiom: ∀x, y.Rr1(x, y)→ Rr1(y, x)
Conjecture: p→ [r1]〈r1〉p

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(p,not(box(r1 ,not(box(r1,not(p))))))

2[GRule:Symmetry] || (U,V):r1 / (V,U):r1

3[And:1] || (skc0):p

4[And:1] || (skc0):not(box(r1,not(box(r1,not(p)))))

5[NBox :4] || (skf1 (skc0)):box(r1,not(p))

6[NBox :4] || ((skc0),(skf1 (skc0))):r1

7[Rule :2.0 ,6.0] || ((skf1 (skc0)),(skc0)):r1

9[Box:5,7] || (skc0):not(p)

10[Clash :9,3] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.9: Symmetry and axiom B

Figure 7.9 is a validity test for axiom B in KB. The associated relational prop-

erty for axiom B is symmetry. The first-order formula representing the symmetric

property over the relation Rr1 is added in the axiom part of the input problem.

Node 2 is the result of translating the clausal form of the symmetric property.

The justification part informs that node 2 is a given rule and is given the label

(Symmetry), which was specified by the user in the input file.

The tree expansion starts by an application of the (∧) rule on the formula of

the first node, which results in nodes 3 and 4. The (¬�) rule is applied on node 4.

This results in a new successor skf1(skc0) that labels the formula [r1]¬p. Node 6

asserts the relation between the world skc0 and its successor skf1(skc0).

Node 7 results from applying rule 2 to node 6. Notice the nodes references in

the justification part. Each node reference is a set of two digits separated by a

dot. The first digit 2 refers to the given rule in node 2. The digit 0 after the dot

refers to the part of the rule that is being resolved.

The result of applying the symmetric property can now be used with the box

rule on node 5, which gives node 9. Node 9 clashes with node 3, which causes

7.8. TESTING FRAME CONDITIONS ON TRADITIONAL MODAL LOGICS104

the application of the closure rule and ⊥ is derived. Since the conjecture is

unsatisfiable, then the axiom is proved to be valid under the local frame set,

which matches our expectations.

In a similar fashion, Figures 7.10, 7.11, 7.12 and 7.13 show the validity proofs

of axioms T, D, 4 and 5 in KT, KD, K4 and K5 respectively.

Input problem:
Axiom: ∀x.Rr1(x, x)
Conjecture: p→ [r1]p

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(box(r1,p),not(p))

2[GRule:reflexivity] || / (U,U):r1

4[And:1] || (skc0):not(p)

5[And:1] || (skc0):box(r1,p)

7[Box:5,2] || (skc0):p

8[Clash :4,7] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.10: Reflexivity and axiom T

Input problem:
Axiom: ∀x,∃y.Rr1(x, y)
Conjecture: [r1]p→ 〈r1〉p

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(box(r1,p),box(r1,not(p)))

2[GRule:seriality] || / (U,(skf0 U)):r1

3[And:1] || (skc0):box(r1,not(p))

4[And:1] || (skc0):box(r1,p)

5[Box:3,2] || (skf0 (skc0)):not(p)

6[Box:4,2] || (skf0 (skc0)):p

7[Clash :5,6] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.11: Seriality and axiom D

7.8. TESTING FRAME CONDITIONS ON TRADITIONAL MODAL LOGICS105

Input problem:
Axiom: ∀x, y, z.(Rr1(x, y) ∧Rr1(y, z))→ Rr1(x, z)
Conjecture: [r1]p→ [r1][r1]p

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(box(r1,p),not(box(r1,box(r1,p))))

2[GRule:transitivity] || (U,V):r1 , (V,W):r1 / (U,W):r1

3[And:1] || (skc0):not(box(r1,box(r1 ,p)))

4[And:1] || (skc0):box(r1,p)

5[NBox :3] || (skf1 (skc0)):not(box(r1,p))

6[NBox :5] || (skf0 (skf1 (skc0))):not(p)

7[NBox :5] || ((skf1 (skc0)),(skf0 (skf1 (skc0)))):r1

8[NBox :3] || ((skc0),(skf1 (skc0))):r1

10[Rule :2.0 ,8.0 ,2.1 ,7.0] || ((skc0) ,(skf0 (skf1 (skc0)))):r1

11[Box:4,10] || (skf0 (skf1 (skc0))):p

12[Clash :6 ,11] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.12: Transitivity and axiom 4

Input problem:
Axiom: ∀x, y, z.(Rr1(x, y) ∧Rr1(x, z))→ Rr1(y, z)
Conjecture: 〈r1〉 → [r1]〈r1〉p

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Tableau proof:

1[Giv:C1] || (skc0):and(not(box(r1,not(p))),not(box(r1 ,not(box(r1,not(p))))))

2[GRule:euclideanness] || (U,V):r1 , (U,W):r1 / (V,W):r1

3[And:1] || (skc0):not(box(r1,not(box(r1 ,not(p)))))

4[And:1] || (skc0):not(box(r1,not(p)))

5[NBox :4] || (skf1 (skc0)):p

6[NBox :3] || (skf0 (skc0)):box(r1,not(p))

7[NBox :3] || ((skc0),(skf0 (skc0))):r1

8[NBox :4] || ((skc0),(skf1 (skc0))):r1

11[Rule :2.0 ,7.0 ,2.1 ,8.0] || ((skf0 (skc0)) ,(skf1 (skc0))):r1

16[Box:6,11] || (skf1 (skc0)):not(p)

18[Clash :16,5] || .

---------------------------------SPASS -STOP ------------------------------------

Figure 7.13: Euclideanness and axiom 5

7.9. RELATIONAL FRAME CONDITIONS IN DYNAMIC MODAL LOGIC106

7.9 Relational frame conditions in dynamic modal

logic

Input problem:
Axioms: ∀x.∃y.Rr1(x, y)
∀x, y, z.(Rr1(x, y) ∧Rr1(y, z))→ Rr2(x, z)
Conjecture: ¬((¬(¬q ∧ [r1]p)) ∧ [r1 ∨ r2]¬p)

Tableau output:

----------------------------TABLEAU -TRANSLATION -----------------------------

Model found:

1[Giv:C1] || (skc0):and(not(and(not(q),box(r1,p))),box(or(r1 ,r2),not(p)))

2[GRule:seriality] || / (U,(skf1 U)):r1

3[GRule:axiom1] || (U,V):r1 , (V,W):r1 / (U,W):r2

4[And:1] || (skc0):box(or(r1 ,r2),not(p))

5[And:1] || (skc0):not(and(not(q),box(r1,p)))

6[OrRI :2] || / (U,(skf1 U)):or(r1 ,r2)

7[Box:4,6] || (skf1 (skc0)):not(p)

8[Rule :3.0 ,2.0 ,3.1 ,2.0] || / (U,(skf1 (skf1 U))):r2

9[OrRI :8] || / (U,(skf1 (skf1 U))):or(r1,r2)

10[Box:4,9] || (skf1 (skf1 (skc0))):not(p)

11[NAnd :5] || (skc0):not(box(r1 ,p))

12[NBox :11] || (skf0 (skc0)):not(p)

13[NBox :11] || ((skc0),(skf0 (skc0))):r1

14[OrRI :13] || ((skc0),(skf0 (skc0))):or(r1 ,r2)

15[Rule :3.0 ,13.0 ,3.1 ,2.0] || ((skc0),(skf1 (skf0 (skc0)))):r2

17[OrRI :15] || ((skc0),(skf1 (skf0 (skc0)))):or(r1,r2)

18[Box:4,17] || (skf1 (skf0 (skc0))):not(p)

---------------------------------SPASS -STOP ------------------------------------

Figure 7.14: Relational frame conditions on dynamic logic

The example in Figure 7.14 serves the purpose of demonstrating how relational

frame conditions work with dynamic modal logics.

The input problem contains three formulae. The first two formulae are first-

order formulae introduced as relational frame conditions in the axioms part of

the file. The third is a dynamic modal logic formula.

Nodes 4 and 5 are the result of applying the (∧) rule to node 1. The formula

that results in 4 is [r1 ∨ r2]¬p. We know from the first axiom that Rr1 is serial,

which means that box rule can be applied to the formula in 4. However, since the

relational formula r1 ∨ r2 of the box operator is replaced with a new predicate by

renaming, we need to derive it first.

7.9. RELATIONAL FRAME CONDITIONS IN DYNAMIC MODAL LOGIC107

Node 6 applies the introduction rule of the relational ∨ on the given rule in 2.

The result contains a variable because it serves as a new rule. The new rule says

that either Rr1 or Rr2 is serial, which is safe to derive. With this new conclusion,

the box rule can now be applied on 4, which gives the result found in 7.

The new rule produced in node 6 can also be derived in tableau if we define a

property rule for (∨)rI using variables and applied the concept of unification:

(D)
.

(U,(skf1 U)) : r1

(∨)rI
(U,V) : r1

(U,V) : r1 ∨ r2

By applying the unification σ = {(skf1 U)/V}, then we can use the conclusion

of (D) as the premise in (∨)rI . The conclusion would be (U,(skf1 U)) : r1 ∨ r2,

which is the same conclusion we derived in node 6.

Node 8 results from resolving the two given rules. The second given rule says

that for any three consecutive worlds connected with the relation Rr1 , then the

first world is connected to the third world via Rr2 . Since it is given that all worlds

have a successor via the Rr1 accessibility relation, then it makes sense to conclude

the result in 8. The rule can also be produced in tableau by using the same idea

described for obtaining node 6 by using unification.

The rest of derivation steps continue with similar explanations until no more

rules can be produced or applied.

Chapter 8

Conclusion

The objective of this thesis was to extend the first-order resolution prover

SPASS so that it appears to users as a modal logic tableau prover.

The implementation had two parts to get to the desired results. The first part

was to get SPASS to produce the exact set of derivation steps that correspond

to tableau derivation steps. The second part was to perform back-translation of

the derived steps that are based on first-order logic to modal logic formulae and

give tableau based justifications of each step.

Getting SPASS to perform as we needed required extending previously imple-

mented modules, which included the module responsible for translating modal

logic formulae to first-order logic, the renaming module, and the top module per-

forming the main search loop. Any addition or change to the code was introduced

carefully as to not disturb existing functionalities of SPASS in any way.

The translation of steps to modal tableau was implemented in a new separate

module. This separation offers better control and maintainability in the new

code.

The results shown in the previous chapter demonstrate that the objectives of

this thesis have been met. The implementation produces tableau proofs when the

negation of the input problem is unsatisfiable and models when it is satisfiable by

finding an open complete branch. The proofs are printed in linear form with the

tree structure being reflected by appropriate indentation. The tests show that

108

CHAPTER 8. CONCLUSION 109

indentations represent branches correctly. The tests also show that the provided

justifications are sensible, reflecting the application of tableau rules.

The main contributions of this thesis are:

• Implemented a functional extension of SPASS v3.5 that performs as a

tableau simulator via first-order resolution for dynamic modal logic with re-

lational operators closed under intersection, disjunction and converse with

the support of including relational frame conditions. The implementation

included recommended simplification and normalization techniques that

help in detecting contradictions faster, which results in better performance.

• Introduced a new mechanism for renaming negated formulae using stan-

dard structural transformation. The mechanism relies on a preprocessing

step prior to formula renaming. When standard structural transformation

is applied on the transformed formula, all necessary definitional clauses are

produced. This new method not only utilized the standard renaming tech-

niques, but also produced fewer definitional clauses than the modal logic

structural transformation suggested by the literature.

• Redefined the tableau calculus for traditional and dynamic modal logics to

reflect what happens in the first-order resolution simulation when relational

frame conditions are imposed. My implementation of handling imposed

conditions is not only new but is also much more flexible than what is

described in the literature because it allows introducing generic rules.

• Since the way I redefined tableau is so unconventional in that the derivation

included not just formulae but also rules defined over variables, I proposed

a second solution where worlds are defined. This second solution is also

new but is much closer to conventional tableau methods.

The following points can be taken into consideration as further work and en-

hancement opportunities for this thesis:

• Investigate labelled splitting in SPASS, which results in a new intelligent

form of backtracking.

• Further investigation of the tableau derivations involving formulae with

variables in the labels and which represent derived rules.

CHAPTER 8. CONCLUSION 110

• Further investigation and implementation of the idea of defining worlds,

which makes all rules resulting from introducing frame conditions structural

and thus prevents deriving formulae with variables in their labels.

• Further extend the current implementation to support a wider range of

logics.

• Provide the tableau derivation in first-order logic as a second option.

• Compare the performance of the simulator to the performance of conven-

tional tableau provers.

• Investigate methods and techniques that enhance the performance of the

current implementation.

Appendix A

Full input example

begin_problem(FullInputExample).

list_of_descriptions.

name ({* Input Example *}).

author ({* Rawan AlBarakati *}).

status(unknown).

description ({* Input Example *}).

end_of_list.

list_of_symbols.

predicates [(r1 ,0) ,(r2 ,0), (p,0), (q,0), (Rr1 ,2) ,(Rr2 ,2)].

translpairs [(r1,Rr1), (r2,Rr2), (p,P), (q,Q)].

end_of_list.

list_of_special_formulae(axioms ,EML).

formula(forall ([x],exists ([y],Rr1(x,y))),seriality).

formula(forall ([x,y,z],implies(and(Rr1(x,y),Rr1(y,z)),Rr2(x,z)))).

end_of_list.

list_of_special_formulae(conjectures ,EML).

prop_formula(not(and(not(and(not(q),box(r1,p))) , box(or(r1,r2),not(p)))),C1).

end_of_list.

end_problem.

111

Appendix B

Full output example

Introduced symbols:

SkP0 : (or (r1) (r2))

SkP1 : (box (or (r1) (r2)) (not (p)))

SkP2 : (not (p))

SkP3 : (not (box (r1) (p)))

SkP4 : (box (r1) (p))

SkP5 : (not (q))

SkP6 : (and (not (q)) (box (r1) (p)))

SkP7 : (not (and (not (q)) (box (r1) (p))))

SkP8 : (and (not (and (not (q)) (box (r1) (p)))) (box (or (r1) (r2)) (not (p))))

--------------------------SPASS -START -----------------------------

Input Problem:

1[0: Inp] || -> SkP8(skc0)*.

2[0: Inp] || -> Rr1(U,skf1(U))*.

3[0: Inp] || SkP8(U) -> SkP7(U)*.

4[0: Inp] || SkP8(U) -> SkP1(U)*.

5[0: Inp] || SkP6(U) -> SkP5(U)*.

6[0: Inp] || SkP6(U) -> SkP4(U)*.

7[0: Inp] || SkP6(U)* SkP7(U) -> .

8[0: Inp] || Q(U)* SkP5(U) -> .

9[0: Inp] || SkP4(U) SkP3(U)* -> .

10[0: Inp] || SkP3(U) -> SkP2(skf0(U))*.

11[0: Inp] || P(U)* SkP2(U) -> .

12[0: Inp] || SkP7(U) -> SkP3(U) Q(U)*.

13[0: Inp] || SkP3(U) -> Rr1(U,skf0(U))*.

14[0: Inp] || Rr1(U,V)* -> SkP0(U,V).

15[0: Inp] || Rr2(U,V)* -> SkP0(U,V).

16[0: Inp] || Rr1(U,V)* SkP4(U) -> P(V).

17[0: Inp] || SkP0(U,V)* SkP1(U) -> SkP2(V).

18[0: Inp] || SkP0(U,V) -> Rr2(U,V) Rr1(U,V)*.

19[0: Inp] || Rr1(U,V)* Rr1(U1 ,U)* -> Rr2(U1,V)*.

This is a first -order Non -Horn problem without equality.

This is a problem that contains sort information.

The following monadic predicates have finite extensions: SkP8.

Axiom clauses: 2 Conjecture clauses: 17

Inferences: IOHy=1 IOFc=1

Reductions: RFSub=1 RBSub=1

112

APPENDIX B. FULL OUTPUT EXAMPLE 113

Extras : No Input Saturation , Always Selection , Full Splitting , Lazy

Reduction , Ratio: 5, FuncWeight: 1, VarWeight: 1

Precedence: nequal > div > id > aa > W > r > r1 > r2 > s > t > p > q > w > v >

a > b > c > d > Rr1 > Rr2 > P > Q > SkP0 > SkP1 > SkP2 > SkP3 > SkP4 > SkP5 >

SkP6 > SkP7 > SkP8 > skc0 > skf0 > skf1

Ordering : KBO

Processed Problem:

Worked Off Clauses:

Usable Clauses:

1[0: Inp] || -> SkP8(skc0)*.

2[0: Inp] || -> Rr1(U,skf1(U))*.

5[0: Inp] || SkP6(U) -> SkP5(U)*.

4[0: Inp] || SkP8(U) -> SkP1(U)*.

6[0: Inp] || SkP6(U) -> SkP4(U)*.

3[0: Inp] || SkP8(U) -> SkP7(U)*.

10[0: Inp] || SkP3(U) -> SkP2(skf0(U))*.

8[0: Inp] || SkP5(U) Q(U)* -> .

11[0: Inp] || SkP2(U) P(U)* -> .

7[0: Inp] || SkP7(U) SkP6(U)* -> .

9[0: Inp] || SkP3(U)* SkP4(U) -> .

13[0: Inp] || SkP3(U) -> Rr1(U,skf0(U))*.

12[0: Inp] || SkP7(U) -> Q(U)* SkP3(U).

15[0: Inp] || Rr2(U,V)* -> SkP0(U,V).

14[0: Inp] || Rr1(U,V)* -> SkP0(U,V).

16[0: Inp] || SkP4(U) Rr1(U,V)* -> P(V).

17[0: Inp] || SkP1(U) SkP0(U,V)* -> SkP2(V).

18[0: Inp] || SkP0(U,V) -> Rr1(U,V)* Rr2(U,V).

19[0: Inp] || Rr1(U,V)* Rr1(V,U1)* -> Rr2(U,U1)*.

SPASS V 3.5+

SPASS beiseite: Completion found.

Problem: inputexample.dfg

SPASS derived 20 clauses , backtracked 0 clauses , performed 1 splits and kept 34

clauses.

SPASS allocated 28096 KBytes.

SPASS spent 0:07:39.04 on the problem.

0:01:46.42 for the input.

0:01:36.72 for the FLOTTER CNF translation , of which

0:00:00.12 for the translation from EML to FOL.

0:00:00.56 for inferences.

0:00:00.00 for the backtracking.

0:00:01.37 for the reduction.

----------------------------TABLEAU -TRANSLATION -----------------------------

Model found:

1[Giv:C1] || (skc0):and(not(and(not(q),box(r1,p))),box(or(r1 ,r2),not(p)))

2[GRule:seriality] || / (U,(skf1 U)):r1

4[And:1] || (skc0):box(or(r1 ,r2),not(p))

5[And:1] || (skc0):not(and(not(q),box(r1,p)))

6[NAnd :5] || (skc0):not(box(r1,p))

7[NBox :6] || (skf0 (skc0)):not(p)

8[NBox :6] || ((skc0),(skf0 (skc0))):r1

APPENDIX B. FULL OUTPUT EXAMPLE 114

10[OrRI :8] || ((skc0) ,(skf0 (skc0))):or(r1,r2)

9[OrRI :2] || / (U,(skf1 U)):or(r1 ,r2)

11[Box:4,9] || (skf1 (skc0)):not(p)

3[GRule:axiom1] || (U,V):r1 , (V,U1):r1 / (U,U1):r2

14[Rule :3.0 ,8.0 ,3.1 ,2.0] || ((skc0) ,(skf1 (skf0 (skc0)))):r2

15[OrRI :14] || ((skc0),(skf1 (skf0 (skc0)))):or(r1,r2)

13[Rule :3.0 ,2.0 ,3.1 ,2.0] || / (U,(skf1 (skf1 U))):r2

16[Box:4,15] || (skf1 (skf0 (skc0))):not(p)

17[OrRI :13] || / (U,(skf1 (skf1 U))):or(r1,r2)

18[Box:4,17] || (skf1 (skf1 (skc0))):not(p)

---------------------------------SPASS -STOP ---------------------------------

Bibliography

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem prov-

ing. In Handbook of Automated Reasoning, pages 19–99. 2001.

[CFdCGHg97] M. A. Castilho, L. Fariñas del Cerro, O. Gasquet, and A. Herzi g.

Modal tableaux with propagation rules and structural rules. Fun-

damenta Informaticae, 3–4(32):281–297, 1997.

[CWT07] Renate A. Schmidt Christoph Weidenbach and Dali Topic.

SPASS input syntax version 3.0. Contained in the documenta-

tion of SPASS Version 3.0. Max-Planck-Institut fur Informatik,

Stuhlsatzenhausweg 85 66123 Saarbrucken, 2007.

[Fit90] Melvin Fitting. First-Order Logic and Automated Theorem Prov-

ing. Springer-Verlag, 1990.

[FW08] Arnaud Fietzke and Christoph Weidenbach. Labelled splitting.

In IJCAR, pages 459–474, 2008.

[GHS03] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyper-

resolution for guarded formulae. J. Symb. Comput., 36(1-2):163–

192, 2003.

[HdNS00] Ullrich Hustadt, Hans de Nivelle, and Renate A. Schmidt.

Resolution-based methods for modal logics. Logic Journal of the

IGPL, 8(3):265–292, 2000.

[HHSS07] I. Horrocks, U. Hustadt, U. Sattler, and R. A. Schmidt. Com-

putational modal logic. In P. Blackburn, J. van Benthem, and

F. Wolter, editors, Handbook of Modal Logic, volume 3 of Studies

in Logic and Practical Reasoning, pages 181–245. Elsevier, Ams-

terdam, 2007. Commissioned overview paper.

115

BIBLIOGRAPHY 116

[Hor97] Ian R. Horrocks. Optimising tableaux decision procedures for de-

scription logic. PhD thesis, The University of Manchester, 1997.

[Hor98] Ian Horrocks. The fact system. In TABLEAUX, pages 307–312,

1998.

[HS98a] Ullrich Hustadt and Renate A. Schmidt. Issues of decidability for

description logics in the framework of resolution. In FTP (LNCS

Selection), pages 191–205, 1998.

[HS98b] Ullrich Hustadt and Renate A. Schmidt. Simplification and back-

jumping in modal tableau. In TABLEAUX, pages 187–201, 1998.

[HS99] Ullrich Hustadt and Renate A. Schmidt. On the relation of resolu-

tion and tableaux proof systems for description logics. In IJCAI,

pages 110–117, 1999.

[HS00] Ullrich Hustadt and Renate A. Schmidt. Mspass: Modal reasoning

by translation and first-order resolution. In TABLEAUX, pages

67–71, 2000.

[HS02] Ullrich Hustadt and Renate A. Schmidt. Using resolution for

testing modal satisfiability and building models. J. Autom. Rea-

soning, 28(2):205–232, 2002.

[Kel97] John J. Kelly. The Essence of Logic. Prentice Hall, first edition

edition, 1997.

[Kri63] Saul Kripke. Semantical analysis of modal logic i: Normal modal

propositional calculi. Zeitschrift fr Mathematische Logik und

Grundlagen der Mathematik, 9:67–96, 1963.

[Li08] Zhen Li. Efficient and generic reasoning for modal logics. PhD

thesis, The University of Manchester, UK, 2008.

[Mas98] Fabio Massacci. Simplification: A general constraint propagation

technique for propositional and modal tableaux. In TABLEAUX,

pages 217–231, 1998.

[Mas00] Fabio Massacci. Single step tableaux for modal logics. J. Autom.

Reasoning, 24(3):319–364, 2000.

BIBLIOGRAPHY 117

[NW01] Andreas Nonnengart and Christoph Weidenbach. Computing

small clause normal forms. In Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning, chapter 6,

pages 335 – 367. Elsevier, Amsterdam, Netherlands, 2001.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution

principle. Journal of the ACM, 12:23–41, 1965.

[RV02] A. Riazanov and A. Voronkov. The design and implementation

of vampire. AI Communications. 15(2-3):91-110, 2002.

[Sch99] Renate A. Schmidt. MSPASS.

http://www.cs.man.ac.uk/ schmidt/mspass/, 1999.

[Sch02] S. Schulz. E: A brainiac theorem prover. AI Communications.

15(2-3):111-126, 2002.

[Sch06] Renate A. Schmidt. Developing modal tableaux and resolution

methods via first-order resolution. In Advances in Modal Logic,

pages 1–26, 2006.

[Sch07] Renate A. Schmidt. pdl-tableau. Available at:

http://www.cs.man.ac.uk/ schmidt/pdl-tableau/, 2003, February

2007.

[Sch08] R. A. Schmidt. A new methodology for developing deduction

methods. Annals of Mathematics and Artificial Intelligence, 2008.

[Sch09a] Renate Schmidt. Comp60121 lecture notes: Au-

tomated reasoning, part ii advanced topics. Uni-

versity of Manchester, 2008-2009. Available at:

http://www.cs.man.ac.uk/ schmidt/COMP60121/2008-

2009/PartIIWeek3.pdf.

[Sch09b] Renate Schmidt. Comp6016 lecture notes: Knowledge

representation and reasoning modal logic and description

logic. University of Manchester, 2008-2009. Avail-

able at: http://www.cs.man.ac.uk/ schmidt/COMP6016/2008-

2009/mldlWeek1.pdf.

BIBLIOGRAPHY 118

[SH06] R. A. Schmidt and U. Hustadt. First-order resolution methods

for modal logics. In A. Podelski, A. Voronkov, and R. Wilhelm,

editors, Volume in memoriam of Harald Ganzinger, Lecture Notes

in Computer Science. Springer, 2006. Invited overview paper, to

appear.

[SH07] Renate A. Schmidt and Ullrich Hustadt. The axiomatic transla-

tion principle for modal logic. ACM Trans. Comput. Log., 8(4),

2007.

[Sko55] T. Skolem. Peano’s axioms and models of arithmetic. Mathemat-

ical Interpretations of formal systems, pages 1–14, 1955. North-

Holland.

[Vor09] Andrei Voronkov. Comp60121 lecture notes: Automated reason-

ing, part i. University of Manchester, 2008-2009. Available at:

http://www.voronkov.com/ar.cgi.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit

Kumar, Martin Suda, and Patrick Wischnewski. SPASS version

3.5. In CADE, pages 140–145, 2009.

[Wei05] Christoph Weidenbach. SPASS: An automated theorem prover

for first-order logic with equality. available at http://spass.mpi-

sb.mpg.de/index.html, 2005.

[Wei06] Christoph Weidenbach. SPASS online quick tutorial, January

2006. Available at: http://www.spass-prover.org/tutorial.html.

[Wei07] Christoph Weidenbach. The SPASS handbook, 2007. max planck

institut informatik.

